Back Electric Field The electric field created by a charge, Q Q Q , acting on a charge q q q , is given by:
E = F e q = k e ∣ Q ∣ r 2 . E = \frac{F_e}{q} = k_e\frac{|Q|}{r^2}. E = q F e = k e r 2 ∣ Q ∣ . Or in vector form:
E = F e q = k e Q r 2 r ^ , \boldsymbol{E} = \frac{\boldsymbol{F_e}}{q} = k_e\frac{Q}{r^2} \boldsymbol{\hat{r}}, E = q F e = k e r 2 Q r ^ , where:
r = ∣ r q − r Q ∣ , r ^ = r q − r Q r , \begin{align*} r &= |\boldsymbol{r}_q - \boldsymbol{r}_Q|, \\ \boldsymbol{\hat{r}} &= \frac{\boldsymbol{r}_q - \boldsymbol{r}_Q}{r}, \end{align*} r r ^ = ∣ r q − r Q ∣ , = r r q − r Q , where r Q \boldsymbol{r}_Q r Q is the position of the source charge and r q \boldsymbol{r}_q r q is the position of the charge that the electric field acts on.
The unit of electric field is newton per coulomb (N C − 1 NC^{-1} N C − 1 ).
A 10 n C 10\ nC 10 n C charge is placed at the origin. A second − 20 n C -20\ nC − 20 n C charge is placed 50 c m 50\ cm 50 c m to the right of the first charge. What is the magnitude and direction of the electric field 20 c m 20\ cm 20 c m above the first charge?
Q 1 = 1 0 − 8 C , Q 2 = − 2 ⋅ 1 0 − 8 C , r 1 = 0 , r 2 = 0.5 m x ^ , r t = 0.2 m y ^ , r t 1 = 0.2 m y ^ , r t 1 = 0.2 m , r ^ t 1 = y ^ , r t 2 = − 0.5 m x ^ + 0.2 m y ^ , r t 2 = 29 10 m , r ^ t 2 = − 5 29 29 x ^ + 2 29 29 y ^ , E 1 = k e Q 1 r t 1 2 r ^ t 1 = 2250 N C − 1 y ^ , E 2 = k e Q 2 r t 2 2 r ^ t 2 = − 18000 29 N C − 1 r ^ t 2 = 90000 29 841 N C − 1 x ^ − 36000 29 841 N C − 1 y ^ , ≈ 576.3 N C − 1 x ^ − 230.52 N C − 1 y ^ , E = E 1 + E 2 = 90000 29 841 N C − 1 x ^ + ( 2250 − 36000 29 841 ) N C − 1 y ^ , ≈ 576.3 N C − 1 x ^ + 2019.48 N C − 1 y ^ , E ≈ 2100.1 N C − 1 . \begin{align*} Q_1 &= 10^{-8}\ C, \\ Q_2 &= -2 \cdot 10^{-8}\ C, \\ \boldsymbol{r}_1 &= \boldsymbol{0}, \\ \boldsymbol{r}_2 &= 0.5\ m\ \boldsymbol{\hat{x}}, \\ \boldsymbol{r}_t &= 0.2\ m\ \boldsymbol{\hat{y}}, \\[1.5ex] \boldsymbol{r}_{t1} &= 0.2\ m\ \boldsymbol{\hat{y}}, \\ r_{t1} &= 0.2\ m, \\ \boldsymbol{\hat{r}_{t1}} &= \boldsymbol{\hat{y}}, \\[1.5ex] \boldsymbol{r}_{t2} &= -0.5\ m\ \boldsymbol{\hat{x}} + 0.2\ m\ \boldsymbol{\hat{y}}, \\ r_{t2} &= \frac{\sqrt{29}}{10}\ m, \\ \boldsymbol{\hat{r}_{t2}} &= -\frac{5 \sqrt{29}}{29}\ \boldsymbol{\hat{x}} + \frac{2 \sqrt{29}}{29}\ \boldsymbol{\hat{y}}, \\[1.5ex] \boldsymbol{E}_1 &= k_e \frac{Q_1}{r_{t1}^2} \boldsymbol{\hat{r}_{t1}} \\ &= 2250\ NC^{-1}\ \boldsymbol{\hat{y}}, \\ \boldsymbol{E}_2 &= k_e \frac{Q_2}{r_{t2}^2} \boldsymbol{\hat{r}_{t2}} \\ &= -\frac{18000}{29}\ NC^{-1}\ \boldsymbol{\hat{r}_{t2}} \\ &= \frac{90000 \sqrt{29}}{841}\ NC^{-1}\ \boldsymbol{\hat{x}} - \frac{36000 \sqrt{29}}{841}\ NC^{-1}\ \boldsymbol{\hat{y}}, \\ &\approx 576.3\ NC^{-1}\ \boldsymbol{\hat{x}} - 230.52\ NC^{-1}\ \boldsymbol{\hat{y}}, \\ \boldsymbol{E} &= \boldsymbol{E}_1 + \boldsymbol{E}_2 \\ &= \frac{90000 \sqrt{29}}{841}\ NC^{-1}\ \boldsymbol{\hat{x}} + \left(2250 - \frac{36000 \sqrt{29}}{841}\right)\ NC^{-1}\ \boldsymbol{\hat{y}}, \\ &\approx 576.3\ NC^{-1}\ \boldsymbol{\hat{x}} + 2019.48\ NC^{-1}\ \boldsymbol{\hat{y}}, \\ E &\approx 2100.1\ NC^{-1}. \end{align*} Q 1 Q 2 r 1 r 2 r t r t 1 r t 1 r ^ t 1 r t 2 r t 2 r ^ t 2 E 1 E 2 E E = 1 0 − 8 C , = − 2 ⋅ 1 0 − 8 C , = 0 , = 0.5 m x ^ , = 0.2 m y ^ , = 0.2 m y ^ , = 0.2 m , = y ^ , = − 0.5 m x ^ + 0.2 m y ^ , = 10 29 m , = − 29 5 29 x ^ + 29 2 29 y ^ , = k e r t 1 2 Q 1 r ^ t 1 = 2250 N C − 1 y ^ , = k e r t 2 2 Q 2 r ^ t 2 = − 29 18000 N C − 1 r ^ t 2 = 841 90000 29 N C − 1 x ^ − 841 36000 29 N C − 1 y ^ , ≈ 576.3 N C − 1 x ^ − 230.52 N C − 1 y ^ , = E 1 + E 2 = 841 90000 29 N C − 1 x ^ + ( 2250 − 841 36000 29 ) N C − 1 y ^ , ≈ 576.3 N C − 1 x ^ + 2019.48 N C − 1 y ^ , ≈ 2100.1 N C − 1 .
Two opposite charges with magnitude q q q are placed at a distance d d d from each other. Calculate the electric field at the distance a a a from the midpoint. This point is at a distance r r r from both charges:
r = ( d 2 ) 2 + a 2 = d 2 + 4 a 2 4 = d 2 + 4 a 2 2 . \begin{align*} r &= \sqrt{\left(\frac{d}{2}\right)^2 + a^2} \\ &= \sqrt{\frac{d^2 + 4a^2}{4}} \\ &= \frac{\sqrt{d^2 + 4a^2}}{2}. \\ \end{align*} r = ( 2 d ) 2 + a 2 = 4 d 2 + 4 a 2 = 2 d 2 + 4 a 2 . Let r 1 \boldsymbol{r_1} r 1 be the position of the first charge, r 2 \boldsymbol{r_2} r 2 the position of the second charge and r t \boldsymbol{r_t} r t the at which the electric field is calculated:
r = ∣ r t − r 1 ∣ = ∣ r t − r 2 ∣ , d = ∣ r 1 − r 2 ∣ , r ^ s 1 = r t − r 1 r , r ^ s 2 = r t − r 2 r . \begin{align*} r &= |\boldsymbol{r_t} - \boldsymbol{r_1}| = |\boldsymbol{r_t} - \boldsymbol{r_2}|, \\ d &= |\boldsymbol{r_1} - \boldsymbol{r_2}|, \\ \boldsymbol{\hat{r}_{s1}} &= \frac{\boldsymbol{r}_t - \boldsymbol{r}_1}{r}, \\ \boldsymbol{\hat{r}_{s2}} &= \frac{\boldsymbol{r}_t - \boldsymbol{r}_2}{r}. \end{align*} r d r ^ s 1 r ^ s 2 = ∣ r t − r 1 ∣ = ∣ r t − r 2 ∣ , = ∣ r 1 − r 2 ∣ , = r r t − r 1 , = r r t − r 2 . The electric field due to the first charge, E 1 \boldsymbol{E}_1 E 1 is equal to:
E 1 = k e q r 2 r ^ s 1 = k e q r 3 ( r t − r 1 ) . \begin{align*} \boldsymbol{E}_1 &= k_e \frac{q}{r^2} \boldsymbol{\hat{r}_{s1}} \\ &= k_e \frac{q}{r^3} (\boldsymbol{r}_t - \boldsymbol{r}_1). \end{align*} E 1 = k e r 2 q r ^ s 1 = k e r 3 q ( r t − r 1 ) . The electric field due to the second charge, E 2 \boldsymbol{E}_2 E 2 is equal to:
E 2 = − k e q r 2 r ^ s 2 = − k e q r 3 ( r t − r 2 ) . \begin{align*} \boldsymbol{E}_2 &= -k_e \frac{q}{r^2} \boldsymbol{\hat{r}_{s2}} \\ &= -k_e \frac{q}{r^3} (\boldsymbol{r}_t - \boldsymbol{r}_2). \end{align*} E 2 = − k e r 2 q r ^ s 2 = − k e r 3 q ( r t − r 2 ) . The total electric field, E \boldsymbol{E} E is equal to:
E = E 1 + E 2 = k e q r 3 ( r t − r 1 ) − k e q r 3 ( r t − r 2 ) = k e q r 3 ( r t − r 1 − r t + r 2 ) = k e q r 3 ( r 2 − r 1 ) = k e q ( d 2 + 4 a 2 2 ) 3 ( r 2 − r 1 ) = 8 k e q ( d 2 + 4 a 2 ) 3 2 ( r 2 − r 1 ) . \begin{align*} \boldsymbol{E} &= \boldsymbol{E}_1 + \boldsymbol{E}_2 \\ &= k_e \frac{q}{r^3} (\boldsymbol{r}_t - \boldsymbol{r}_1) - k_e \frac{q}{r^3} (\boldsymbol{r}_t - \boldsymbol{r}_2) \\ &= k_e \frac{q}{r^3} (\boldsymbol{r}_t - \boldsymbol{r}_1 - \boldsymbol{r}_t + \boldsymbol{r}_2) \\ &= k_e \frac{q}{r^3} (\boldsymbol{r}_2 - \boldsymbol{r}_1) \\ &= k_e \frac{q}{\left(\frac{\sqrt{d^2 + 4a^2}}{2}\right)^3} (\boldsymbol{r}_2 - \boldsymbol{r}_1) \\ &= \frac{8 k_e q}{(d^2 + 4a^2)^{\frac{3}{2}}} (\boldsymbol{r}_2 - \boldsymbol{r}_1). \end{align*} E = E 1 + E 2 = k e r 3 q ( r t − r 1 ) − k e r 3 q ( r t − r 2 ) = k e r 3 q ( r t − r 1 − r t + r 2 ) = k e r 3 q ( r 2 − r 1 ) = k e ( 2 d 2 + 4 a 2 ) 3 q ( r 2 − r 1 ) = ( d 2 + 4 a 2 ) 2 3 8 k e q ( r 2 − r 1 ) . Transforming the coordinate system so that r 1 \boldsymbol{r}_1 r 1 is at the origin and r 2 \boldsymbol{r}_2 r 2 lies on the x axis, the magnitude of the electric field can be calculated in the original terms:
r 2 = d x ^ , E = 8 k e q ( d 2 + 4 a 2 ) 3 2 d x ^ = 8 k e q d ( d 2 + 4 a 2 ) 3 2 x ^ , E = 8 k e q d ( d 2 + 4 a 2 ) 3 2 . \begin{align*} \boldsymbol{r}_2 &= d \boldsymbol{\hat{x}}, \\ \boldsymbol{E} &= \frac{8 k_e q}{(d^2 + 4a^2)^{\frac{3}{2}}} d \boldsymbol{\hat{x}} \\ &= \frac{8 k_e q d}{(d^2 + 4a^2)^{\frac{3}{2}}} \boldsymbol{\hat{x}}, \\ E &= \frac{8 k_e q d}{(d^2 + 4a^2)^{\frac{3}{2}}}. \\ \end{align*} r 2 E E = d x ^ , = ( d 2 + 4 a 2 ) 2 3 8 k e q d x ^ = ( d 2 + 4 a 2 ) 2 3 8 k e q d x ^ , = ( d 2 + 4 a 2 ) 2 3 8 k e q d .
A line has a constant linear charge density λ \lambda λ . Its ends lie in points A A A and B B B . What is the electric field at point C C C ?
Let H H H be the projection of C C C onto the line, then:
l = B − A , h = H − A , s = C − H , \begin{align*} \boldsymbol{l} &= B - A, \\ \boldsymbol{h} &= H - A, \\ \boldsymbol{s} &= C - H, \\ \end{align*} l h s = B − A , = H − A , = C − H , Let's transform the coordinate system so that H H H lies in origin and the line is aligned with the y-axis:
x ^ = s s , y ^ = l l , h y = y ^ ⋅ ( C − A ) , h = h y y ^ , H = A + h . \begin{align*} \boldsymbol{\hat{x}} &= \frac{\boldsymbol{s}}{s}, \\ \boldsymbol{\hat{y}} &= \frac{\boldsymbol{l}}{l}, \\ h_y &= \boldsymbol{\hat{y}} \cdot (C - A), \\ \boldsymbol{h} &= h_y \boldsymbol{\hat{y}}, \\ H &= A + \boldsymbol{h}. \end{align*} x ^ y ^ h y h H = s s , = l l , = y ^ ⋅ ( C − A ) , = h y y ^ , = A + h . Let's parametrize the position on the line by y y y :
λ = d q d l ⟹ d q = λ d l = λ d y , r = y 2 + s 2 , d E = k e d q r 2 = k e λ d y y 2 + s 2 , d E x = cos α 1 d E , d E y = sin α 1 d E , cos α 1 = s r , sin α 1 = − sin α 2 = − y r , d E x = k e λ s d y ( y 2 + s 2 ) 3 2 , E x = k e λ s ∫ − h y l − h y d y ( y 2 + s 2 ) 3 2 = k e λ s [ y y 2 + s 2 ] − h y l − h y = k e λ s [ l − h y ( l − h y ) 2 + s 2 + h y h y 2 + s 2 ] , d E y = k e λ y d y ( y 2 + s 2 ) 3 2 , E y = − k e λ ∫ − h y l − h y y d y ( y 2 + s 2 ) 3 2 = k e λ [ 1 y 2 + s 2 ] − h y l − h y = k e λ [ 1 y 2 + s 2 ] − h y l − h y = k e λ [ 1 ( l − h y ) 2 + s 2 − 1 h y 2 + s 2 ] . \begin{align*} \lambda &= \frac{dq}{dl} \implies dq = \lambda\ dl = \lambda\ dy, \\ r &= \sqrt{y^2 + s^2}, \\ dE &= k_e \frac{dq}{r^2} \\ &= k_e \lambda \frac{dy}{y^2 + s^2}, \\ d E_x &= \cos \alpha_1\ dE, \\ d E_y &= \sin \alpha_1\ dE, \\ \cos \alpha_1 &= \frac{s}{r}, \\ \sin \alpha_1 &= -\sin \alpha_2 = -\frac{y}{r}, \\ d E_x &= k_e \lambda s \frac{dy}{(y^2 + s^2)^{\frac{3}{2}}}, \\ E_x &= k_e \lambda s \int_{-h_y}^{l - h_y} \frac{dy}{(y^2 + s^2)^{\frac{3}{2}}} \\ &= \frac{k_e \lambda}{s} \left[\frac{y}{\sqrt{y^2 + s^2}}\right]_{-h_y}^{l - h_y} \\ &= \frac{k_e \lambda}{s} \left[\frac{l - h_y}{\sqrt{(l - h_y)^2 + s^2}} + \frac{h_y}{\sqrt{h_y^2 + s^2}}\right], \\ d E_y &= k_e \lambda \frac{y\ dy}{(y^2 + s^2)^{\frac{3}{2}}}, \\ E_y &= -k_e \lambda \int_{-h_y}^{l - h_y} \frac{y\ dy}{(y^2 + s^2)^{\frac{3}{2}}} \\ &= k_e \lambda \left[\frac{1}{\sqrt{y^2 + s^2}}\right]_{-h_y}^{l - h_y} \\ &= k_e \lambda \left[\frac{1}{\sqrt{y^2 + s^2}}\right]_{-h_y}^{l - h_y} \\ &= k_e \lambda \left[\frac{1}{\sqrt{(l - h_y)^2 + s^2}} - \frac{1}{\sqrt{h_y^2 + s^2}}\right]. \\ \end{align*} λ r d E d E x d E y cos α 1 sin α 1 d E x E x d E y E y = d l d q ⟹ d q = λ d l = λ d y , = y 2 + s 2 , = k e r 2 d q = k e λ y 2 + s 2 d y , = cos α 1 d E , = sin α 1 d E , = r s , = − sin α 2 = − r y , = k e λ s ( y 2 + s 2 ) 2 3 d y , = k e λ s ∫ − h y l − h y ( y 2 + s 2 ) 2 3 d y = s k e λ [ y 2 + s 2 y ] − h y l − h y = s k e λ ( l − h y ) 2 + s 2 l − h y + h y 2 + s 2 h y , = k e λ ( y 2 + s 2 ) 2 3 y d y , = − k e λ ∫ − h y l − h y ( y 2 + s 2 ) 2 3 y d y = k e λ [ y 2 + s 2 1 ] − h y l − h y = k e λ [ y 2 + s 2 1 ] − h y l − h y = k e λ ( l − h y ) 2 + s 2 1 − h y 2 + s 2 1 . Putting it all together, the electric field vector is equal to:
E = E x x ^ + E y y ^ \boldsymbol{E} = E_x \boldsymbol{\hat{x}} + E_y \boldsymbol{\hat{y}} E = E x x ^ + E y y ^ where:
l = B − A , h y = y ^ ⋅ ( C − A ) , h = h y y ^ , H = A + h , s = C − H , E x = k e λ s ( l − h y ( l − h y ) 2 + s 2 + h y h y 2 + s 2 ) , E y = k e λ ( 1 ( l − h y ) 2 + s 2 − 1 h y 2 + s 2 ) , x ^ = s s , y ^ = l l , \begin{align*} \boldsymbol{l} &= B - A, \\ h_y &= \boldsymbol{\hat{y}} \cdot (C - A), \\ \boldsymbol{h} &= h_y \boldsymbol{\hat{y}}, \\ H &= A + \boldsymbol{h}, \\ \boldsymbol{s} &= C - H, \\ E_x &= \frac{k_e \lambda}{s} \left(\frac{l - h_y}{\sqrt{(l - h_y)^2 + s^2}} + \frac{h_y}{\sqrt{h_y^2 + s^2}}\right), \\ E_y &= k_e \lambda \left(\frac{1}{\sqrt{(l - h_y)^2 + s^2}} - \frac{1}{\sqrt{h_y^2 + s^2}}\right), \\ \boldsymbol{\hat{x}} &= \frac{\boldsymbol{s}}{s}, \\ \boldsymbol{\hat{y}} &= \frac{\boldsymbol{l}}{l}, \\ \end{align*} l h y h H s E x E y x ^ y ^ = B − A , = y ^ ⋅ ( C − A ) , = h y y ^ , = A + h , = C − H , = s k e λ ( l − h y ) 2 + s 2 l − h y + h y 2 + s 2 h y , = k e λ ( l − h y ) 2 + s 2 1 − h y 2 + s 2 1 , = s s , = l l , and H H H lies at the origin.
Let l → ∞ l \to \infty l → ∞ and h y = l 2 h_y = \frac{l}{2} h y = 2 l . Since the point C C C would be at the center of the line, the y y y component of the electric field vanishes:
E y = k e λ ( 1 ( l − l 2 ) 2 + s 2 − 1 ( l 2 ) 2 + s 2 ) = k e λ ( 1 ( l 2 ) 2 + s 2 − 1 ( l 2 ) 2 + s 2 ) = 0. \begin{align*} E_y &= k_e \lambda \left(\frac{1}{\sqrt{\left(l - \frac{l}{2}\right)^2 + s^2}} - \frac{1}{\sqrt{\left(\frac{l}{2}\right)^2 + s^2}}\right) \\ &= k_e \lambda \left(\frac{1}{\sqrt{\left(\frac{l}{2}\right)^2 + s^2}} - \frac{1}{\sqrt{\left(\frac{l}{2}\right)^2 + s^2}}\right) \\ &= 0. \end{align*} E y = k e λ ( l − 2 l ) 2 + s 2 1 − ( 2 l ) 2 + s 2 1 = k e λ ( 2 l ) 2 + s 2 1 − ( 2 l ) 2 + s 2 1 = 0. Taking the limit of E x E_x E x :
E x = k e λ s lim l → ∞ ( l − l 2 ( l − l 2 ) 2 + s 2 + l 2 ( l 2 ) 2 + s 2 ) = k e λ s lim l → ∞ ( l 2 ( l 2 ) 2 + s 2 + l 2 ( l 2 ) 2 + s 2 ) = k e λ s lim l → ∞ ( l l 2 + 4 s 2 4 ) = 2 k e λ s lim l → ∞ ( 1 1 + 4 s 2 l 2 ) = 2 k e λ s . \begin{align*} E_x &= \frac{k_e \lambda}{s} \lim_{l \to \infty} \left(\frac{l - \frac{l}{2}}{\sqrt{\left(l - \frac{l}{2}\right)^2 + s^2}} + \frac{\frac{l}{2}}{\sqrt{\left(\frac{l}{2}\right)^2 + s^2}}\right) \\ &= \frac{k_e \lambda}{s} \lim_{l \to \infty} \left(\frac{\frac{l}{2}}{\sqrt{\left(\frac{l}{2}\right)^2 + s^2}} + \frac{\frac{l}{2}}{\sqrt{\left(\frac{l}{2}\right)^2 + s^2}}\right) \\ &= \frac{k_e \lambda}{s} \lim_{l \to \infty} \left(\frac{l}{\sqrt{\frac{l^2 + 4s^2}{4}}}\right) \\ &= \frac{2 k_e \lambda}{s} \lim_{l \to \infty} \left(\frac{1}{\sqrt{1 + 4\frac{s^2}{l^2}}}\right) \\ &= \frac{2 k_e \lambda}{s}. \end{align*} E x = s k e λ l → ∞ lim ( l − 2 l ) 2 + s 2 l − 2 l + ( 2 l ) 2 + s 2 2 l = s k e λ l → ∞ lim ( 2 l ) 2 + s 2 2 l + ( 2 l ) 2 + s 2 2 l = s k e λ l → ∞ lim 4 l 2 + 4 s 2 l = s 2 k e λ l → ∞ lim 1 + 4 l 2 s 2 1 = s 2 k e λ .