Back

Einstein Field Equations

Recall the contracted Bianchi identity:

Gμν;μ=(Rμν12Rgμν);μ=0,G^{\mu \nu}{}_{; \mu} = \left(R^{\mu \nu} - \frac{1}{2} R g^{\mu \nu}\right)_{; \mu} = 0,

and the conservation of energy-momentum:

Tμν;μ=0.T^{\mu \nu}{}_{; \mu} = 0.

Because of metric compatibility (the covariant derivative of metric tensor is zero), we can add a term:

(Rμν12Rgμν+Λgμν);μ=0,\left(R^{\mu \nu} - \frac{1}{2} R g^{\mu \nu} + \Lambda g^{\mu \nu}\right)_{; \mu} = 0,

where Λ\Lambda is the cosmological constant. It is related to the expansion of the universe. The current form of the Einstein field equations is:

Rμν12Rgμν+Λgμν=κTμν,R^{\mu \nu} - \frac{1}{2} R g^{\mu \nu} + \Lambda g^{\mu \nu} = \kappa T^{\mu \nu},

where κ\kappa is the Einstein gravitational constant. We need to solve for it. By doing the following:

  1. taking the low velocity limit
  2. taking the weak gravity limit
  3. assuming time-independent metric

and match it with Newton-Cartan theory.

In low velocity limit, the proper time approaches the coordinate time and the spatial velocities approach zero:

τt,U[1000], \begin{align*} \tau &\to t, \\ \boldsymbol{U} &\to \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \end{align*}

this means that we can use the Newton-Cartan theory.

In weak gravity limit, the metric approaches the Minkowski metric plus a very small error:

gμνημν+hμν,ημν=diag(1,1,1,1),hμν1. \begin{align*} g_{\mu \nu} &\to \eta_{\mu \nu} + h_{\mu \nu}, \\ \eta_{\mu \nu} &= \textrm{diag}(-1, 1, 1, 1), \\ |h_{\mu \nu}| &\ll 1. \end{align*}

This means that when doing summations, hμνh_{\mu \nu} can be ommited:

Aμαgαν=Aμα(ηαν+hαν)=Aμαηαν,A^{\mu \alpha} g_{\alpha \nu} = A^{\mu \alpha} (\eta_{\alpha \nu} + h_{\alpha \nu}) = A^{\mu \alpha} \eta_{\alpha \nu},

but when taking derivatives, ημν\eta_{\mu \nu} is zero:

gμν,σ=ημν,σ+hμν,σ=hμν,σ.g_{\mu \nu, \sigma} = \eta_{\mu \nu, \sigma} + h_{\mu \nu, \sigma} = h_{\mu \nu, \sigma}.

Time-independent metric means the following:

gμν,t=0,g_{\mu \nu, t} = 0,

implying:

Γσμν,t=0.\Gamma^{\sigma}{}_{\mu \nu, t} = 0.

A final assumption is that the cosmological constant is small enough to be ignored and that all gravity is caused by mass. Meaning the energy-momentum tensor is that of a dust and the only nonzero component is:

Ttt=ρ,T^{tt} = \rho,

and the component is the same with its both indices lowered:

Ttt=Tμνgμtgνt=Tttηttηtt=Ttt(1)(1)=Ttt.T_{tt} = T^{\mu \nu} g_{\mu t} g_{\nu t} = T^{tt} \eta_{tt} \eta_{tt} = T^{tt} (-1) (-1) = T^{tt}.

The Einstein field equations look like this:

Rμν12Rgμν=κTμν,R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} = \kappa T_{\mu \nu},

from the spatial components, we can calculate the spatial components of the Ricci tensor:

Rij12Rgij=κTij,Rij12Rηij=0,Rij12Rδij=0,Rij=12Rδij, \begin{align*} R_{ij} - \frac{1}{2} R g_{ij} &= \kappa T_{ij}, \\ R_{ij} - \frac{1}{2} R \eta_{ij} &= 0, \\ R_{ij} - \frac{1}{2} R \delta_{ij} &= 0, \\ R_{ij} &= \frac{1}{2} R \delta_{ij}, \end{align*}

and this may be substituted into the equation for the Ricci scalar to calculate the time-time component of the Ricci tensor:

R=Rμνgμν=Rμνημν=Rtt+R11+R22+R33=Rtt+32R,Rtt=12R, \begin{align*} R &= R_{\mu \nu} g^{\mu \nu} \\ &= R_{\mu \nu} \eta^{\mu \nu} \\ &= -R_{tt} + R_{11} + R_{22} + R_{33} \\ &= -R_{tt} + \frac{3}{2} R, \\ R_{tt} &= \frac{1}{2} R, \end{align*}

which is consistent with the spatial components of the Ricci tensor:

Rμν=12Rδμν.R_{\mu \nu} = \frac{1}{2} R \delta_{\mu \nu}.

Substituting this into the Einstein field equations, we get (off-diagonal terms give us 0=00 = 0):

Rμν12Rgμν=κTμν,12Rδμν12Rημν=κTμν,12Rδμμ12Rημμ=κTμμ,12Rδtt12Rηtt=κTtt,12R+12R=κρ,R=κρ,Rii12Rgii=κTii,Rii12Rηii=0,Rii12Rδii=0,12R12R=0,0=0, \begin{align*} R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} &= \kappa T_{\mu \nu}, \\ \frac{1}{2} R \delta_{\mu \nu} - \frac{1}{2} R \eta_{\mu \nu} &= \kappa T_{\mu \nu}, \\ \frac{1}{2} R \delta_{\mu \mu} - \frac{1}{2} R \eta_{\mu \mu} &= \kappa T_{\mu \mu}, \\[3ex] \frac{1}{2} R \delta_{tt} - \frac{1}{2} R \eta_{tt} &= \kappa T_{tt}, \\ \frac{1}{2} R + \frac{1}{2} R &= \kappa \rho, \\ R &= \kappa \rho, \\[3ex] R_{ii} - \frac{1}{2} R g_{ii} &= \kappa T_{ii}, \\ R_{ii} - \frac{1}{2} R \eta_{ii} &= 0, \\ R_{ii} - \frac{1}{2} R \delta_{ii} &= 0, \\ \frac{1}{2} R - \frac{1}{2} R &= 0, \\ 0 &= 0, \end{align*}

so the only relevant term is the time-time component of the equations which results in:

R=κρ.R = \kappa \rho.

Now, remember from the Newton-Cartan theory:

Rtt=4πρ,R_{tt} = 4 \pi \rho,

where we found that

Rtt=12R=12κρ.R_{tt} = \frac{1}{2} R = \frac{1}{2} \kappa \rho.

We can set these two equations equal and solve for κ\kappa:

12κρ=4π,κ=8π. \begin{align*} \frac{1}{2} \kappa \rho = 4 \pi, \\ \kappa = 8 \pi. \end{align*}

We have solved for the Einstein gravitational constant and can now substite it into the Einstein field equation:

Rμν12Rgμν+Λgμν=8πTμν.R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} = 8 \pi T_{\mu \nu}.

We can also obtain a trace reversed form by multiplying both sides by gμνg^{\mu \nu}:

Rμνgμν12Rgμνgμν+Λgμνgμν=κTμνgμν,R12Rδμμ+Λδμμ=κT,R2R+4Λ=κT,R+4Λ=κT,R=4ΛκT, \begin{align*} R_{\mu \nu} g^{\mu \nu} - \frac{1}{2} R g_{\mu \nu} g^{\mu \nu} + \Lambda g_{\mu \nu} g^{\mu \nu} &= \kappa T_{\mu \nu} g^{\mu \nu}, \\ R - \frac{1}{2} R \delta^{\mu}_{\mu} + \Lambda \delta^{\mu}_{\mu} &= \kappa T, \\ R - 2 R + 4 \Lambda &= \kappa T, \\ -R + 4 \Lambda &= \kappa T, \\ R &= 4 \Lambda -\kappa T, \end{align*}

substituting for the Ricci scalar:

Rμν12(4ΛκT)gμν+Λgμν=κTμν,Rμν+12κTgμν2Λgμν+Λgμν=κTμν,Rμν+12κTgμνΛgμν=κTμν,Rμν=κ(Tμν12Tgμν)+Λgμν,=8π(Tμν12Tgμν)+Λgμν, \begin{align*} R_{\mu \nu} - \frac{1}{2} (4 \Lambda - \kappa T) g_{\mu \nu} + \Lambda g_{\mu \nu} &= \kappa T_{\mu \nu}, \\ R_{\mu \nu} + \frac{1}{2} \kappa T g_{\mu \nu} - 2 \Lambda g_{\mu \nu} + \Lambda g_{\mu \nu} &= \kappa T_{\mu \nu}, \\ R_{\mu \nu} + \frac{1}{2} \kappa T g_{\mu \nu} - \Lambda g_{\mu \nu} &= \kappa T_{\mu \nu}, \\ R_{\mu \nu} &= \kappa \left(T_{\mu \nu} - \frac{1}{2} T g_{\mu \nu}\right) + \Lambda g_{\mu \nu}, \\ &= 8 \pi \left(T_{\mu \nu} - \frac{1}{2} T g_{\mu \nu}\right) + \Lambda g_{\mu \nu}, \end{align*}

where

T=Tμμ=TμνgμνT = T^{\mu}{}_{\mu} = T_{\mu \nu} g^{\mu \nu}

is the trace of the energy-momentum tensor.

So we have the two forms of the equations:

Rμν12Rgμν+Λgμν=8πTμν,8π(Tμν12Tgμν)+Λgμν=Rμν. \begin{align*} R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} + \Lambda g_{\mu \nu} &= 8 \pi T_{\mu \nu}, \\ 8 \pi \left(T_{\mu \nu} - \frac{1}{2} T g_{\mu \nu}\right) + \Lambda g_{\mu \nu} &= R_{\mu \nu}. \end{align*}

The Einstein gravitational constant

κ2.081043 N1,\kappa \approx 2.08 \cdot 10^{-43}\ N^{-1},

meaning it takes a lot of mass and energy to curve the spacetime.