Back Arc Length and Metric Tensor To calculate the (squared) length of a vector, we take the dot product of the vector with it self:
∣ v ∣ 2 = v ⋅ v = ( v μ e μ ) ⋅ ( v ν e ν ) = v μ v ν ( e μ ⋅ e ν ) . \begin{align*} |\boldsymbol{v}|^2 &= \boldsymbol{v} \cdot \boldsymbol{v} \\ &= (v^{\mu} \boldsymbol{e_{\mu}}) \cdot (v^{\nu} \boldsymbol{e_{\nu}}) \\ &= v^{\mu} v^{\nu} (\boldsymbol{e_{\mu}} \cdot \boldsymbol{e_{\nu}}). \end{align*} ∣ v ∣ 2 = v ⋅ v = ( v μ e μ ) ⋅ ( v ν e ν ) = v μ v ν ( e μ ⋅ e ν ) . In 2D Cartesian coordinates, the dot products of basis vectors are as follows:
e x ⋅ e x = 1 , e x ⋅ e y = 0 , e y ⋅ e y = 1. \begin{align*} \boldsymbol{e_x} \cdot \boldsymbol{e_x} = 1, \\ \boldsymbol{e_x} \cdot \boldsymbol{e_y} = 0, \\ \boldsymbol{e_y} \cdot \boldsymbol{e_y} = 1. \end{align*} e x ⋅ e x = 1 , e x ⋅ e y = 0 , e y ⋅ e y = 1. The metric tensor g μ ν g_{\mu \nu} g μν contains these dot products:
g μ ν = e μ ⋅ e ν . g_{\mu \nu} = \boldsymbol{e_{\mu}} \cdot \boldsymbol{e_{\nu}}. g μν = e μ ⋅ e ν . For the Cartesian coordinate system, the metric tensor is equal to the Kronecker delta:
g μ ν = δ μ ν = { 1 μ = ν , 0 μ ≠ ν , g_{\mu \nu} = \delta_{\mu \nu} = \begin{cases} 1 & \mu &= \nu, \\ 0 & \mu &\neq \nu, \end{cases} g μν = δ μν = { 1 0 μ μ = ν , = ν , Or represented as matrix for 2D Cartesian coordinate system:
g μ ν = [ 1 0 0 1 ] g_{\mu \nu} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} g μν = [ 1 0 0 1 ] This means that the vectors are parallel to each other due to the missing off diagonal components.
The metric tensor has two covariant indices. Consider the coordinate transformation x μ → x ~ μ x^{\mu} \to \tilde{x}^{\mu} x μ → x ~ μ , the bases transform as follows:
e ~ μ = ∂ x ν ∂ x ~ μ e ν , \boldsymbol{\tilde{e}_{\mu}} = \frac{\partial x^{\nu}}{\partial \tilde{x}^{\mu}} \boldsymbol{e}_{\nu}, e ~ μ = ∂ x ~ μ ∂ x ν e ν , and the metric:
g ~ μ ν = e ~ μ ⋅ e ~ ν = ∂ x α ∂ x ~ μ e α ⋅ ∂ x β ∂ x ~ ν e β = ∂ x α ∂ x ~ μ ∂ x β ∂ x ~ ν e α ⋅ e β = ∂ x α ∂ x ~ μ ∂ x β ∂ x ~ ν g α β . \begin{align*} \tilde{g}_{\mu \nu} &= \boldsymbol{\tilde{e}_{\mu} \cdot \tilde{e}_{\nu}} \\ &= \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \boldsymbol{e}_{\alpha} \cdot \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} \boldsymbol{e}_{\beta} \\ &= \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} \boldsymbol{e}_{\alpha} \cdot \boldsymbol{e}_{\beta} \\ &= \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta}. \end{align*} g ~ μν = e ~ μ ⋅ e ~ ν = ∂ x ~ μ ∂ x α e α ⋅ ∂ x ~ ν ∂ x β e β = ∂ x ~ μ ∂ x α ∂ x ~ ν ∂ x β e α ⋅ e β = ∂ x ~ μ ∂ x α ∂ x ~ ν ∂ x β g α β . The metric tensor is also symmetric:
g μ ν = e μ ⋅ e ν = e ν ⋅ e μ = g ν μ . \begin{align*} g_{\mu \nu} &= \boldsymbol{e_{\mu}} \cdot \boldsymbol{e_{\nu}} \\ &= \boldsymbol{e_{\nu}} \cdot \boldsymbol{e_{\mu}} \\ &= g_{\nu \mu}. \end{align*} g μν = e μ ⋅ e ν = e ν ⋅ e μ = g νμ . Generally, if we want to compute the dot product of two vectors, we use the metric tensor:
v ⋅ w = ( v μ e μ ) ⋅ ( w ν e ν ) = v μ w ν ( e μ ⋅ e ν ) = v μ w ν g μ ν = ∣ v ∣ ∣ w ∣ cos θ , \begin{align*} \boldsymbol{v} \cdot \boldsymbol{w} &= (v^{\mu} \boldsymbol{e_{\mu}}) \cdot (w^{\nu} \boldsymbol{e_{\nu}}) \\ &= v^{\mu} w^{\nu} (\boldsymbol{e_{\mu}} \cdot \boldsymbol{e_{\nu}}) \\ &= v^{\mu} w^{\nu} g_{\mu \nu} = |\boldsymbol{v}| |\boldsymbol{w}| \cos \theta, \end{align*} v ⋅ w = ( v μ e μ ) ⋅ ( w ν e ν ) = v μ w ν ( e μ ⋅ e ν ) = v μ w ν g μν = ∣ v ∣∣ w ∣ cos θ , where θ \theta θ is the angle between the two vectors.
The metric tensor is a function g : V × V → R g: V \times V \to \mathbb{R} g : V × V → R :
g ( v , w ) = v μ w ν g μ ν . g(\boldsymbol{v}, \boldsymbol{w}) = v^{\mu} w^{\nu} g_{\mu \nu}. g ( v , w ) = v μ w ν g μν . We can scale the inputs of the metric tensor:
g ( a v , w ) = g ( v , a w ) = a g ( v , w ) , a ( v μ w ν g μ ν ) = ( a v μ ) w ν g μ ν = v μ ( a w ν ) g μ ν \begin{align*} g(a \boldsymbol{v}, \boldsymbol{w}) &= g(\boldsymbol{v}, a \boldsymbol{w}) = a g(\boldsymbol{v}, \boldsymbol{w}), \\ a (v^{\mu} w^{\nu} g_{\mu \nu}) &= (a v^{\mu}) w^{\nu} g_{\mu \nu} = v^{\mu} (a w^{\nu}) g_{\mu \nu} \end{align*} g ( a v , w ) a ( v μ w ν g μν ) = g ( v , a w ) = a g ( v , w ) , = ( a v μ ) w ν g μν = v μ ( a w ν ) g μν The inputs can also be added:
g ( v + u , w ) = g ( v , w ) + g ( u , w ) , ( v μ + u μ ) w ν g μ ν = v μ w ν g μ ν + u μ w ν g μ ν , g ( v , w + t ) = g ( v , w ) + g ( v , t ) , v μ ( w ν + t ν ) g μ ν = v μ w ν g μ ν + v μ t ν g μ ν , \begin{align*} g(\boldsymbol{v} + \boldsymbol{u}, \boldsymbol{w}) &= g(\boldsymbol{v}, \boldsymbol{w}) + g(\boldsymbol{u}, \boldsymbol{w}), \\ (v^{\mu} + u^{\mu}) w^{\nu} g_{\mu \nu} &= v^{\mu} w^{\nu} g_{\mu \nu} + u^{\mu} w^{\nu} g_{\mu \nu}, \\ g(\boldsymbol{v}, \boldsymbol{w} + \boldsymbol{t}) &= g(\boldsymbol{v}, \boldsymbol{w}) + g(\boldsymbol{v}, \boldsymbol{t}), \\ v^{\mu} (w^{\nu} + t^{\nu}) g_{\mu \nu} &= v^{\mu} w^{\nu} g_{\mu \nu} + v^{\mu} t^{\nu} g_{\mu \nu}, \end{align*} g ( v + u , w ) ( v μ + u μ ) w ν g μν g ( v , w + t ) v μ ( w ν + t ν ) g μν = g ( v , w ) + g ( u , w ) , = v μ w ν g μν + u μ w ν g μν , = g ( v , w ) + g ( v , t ) , = v μ w ν g μν + v μ t ν g μν , however:
g ( v + u , w + t ) ≠ g ( v , w ) + g ( u , t ) , g ( v + u , w + t ) = g ( v , w + t ) + g ( u , w + t ) = g ( v , w ) + g ( v , t ) + g ( u , w ) + g ( u , t ) . \begin{align*} g(\boldsymbol{v} + \boldsymbol{u}, \boldsymbol{w} + \boldsymbol{t}) &\neq g(\boldsymbol{v}, \boldsymbol{w}) + g(\boldsymbol{u}, \boldsymbol{t}), \\ g(\boldsymbol{v} + \boldsymbol{u}, \boldsymbol{w} + \boldsymbol{t}) &= g(\boldsymbol{v}, \boldsymbol{w} + \boldsymbol{t}) + g(\boldsymbol{u}, \boldsymbol{w} + \boldsymbol{t}) \\ &= g(\boldsymbol{v}, \boldsymbol{w}) + g(\boldsymbol{v}, \boldsymbol{t}) + g(\boldsymbol{u}, \boldsymbol{w}) + g(\boldsymbol{u}, \boldsymbol{t}). \end{align*} g ( v + u , w + t ) g ( v + u , w + t ) = g ( v , w ) + g ( u , t ) , = g ( v , w + t ) + g ( u , w + t ) = g ( v , w ) + g ( v , t ) + g ( u , w ) + g ( u , t ) . And this is the same definition as bilinear form:
B : V × V → R , a B ( v , w ) = B ( a v , w ) = B ( v , a w ) , B ( v + u , w ) = B ( v , w ) + B ( u , w ) , B ( v , w + t ) = B ( v , w ) + B ( v , t ) . \begin{gather*} \mathcal{B}: V \times V \to \mathbb{R}, \\ a\mathcal{B}(\boldsymbol{v}, \boldsymbol{w}) = \mathcal{B}(a\boldsymbol{v}, \boldsymbol{w}) = \mathcal{B}(\boldsymbol{v}, a\boldsymbol{w}), \\ \mathcal{B}(\boldsymbol{v} + \boldsymbol{u}, \boldsymbol{w}) = \mathcal{B}(\boldsymbol{v}, \boldsymbol{w}) + \mathcal{B}(\boldsymbol{u}, \boldsymbol{w}), \\ \mathcal{B}(\boldsymbol{v}, \boldsymbol{w} + \boldsymbol{t}) = \mathcal{B}(\boldsymbol{v}, \boldsymbol{w}) + \mathcal{B}(\boldsymbol{v}, \boldsymbol{t}). \end{gather*} B : V × V → R , a B ( v , w ) = B ( a v , w ) = B ( v , a w ) , B ( v + u , w ) = B ( v , w ) + B ( u , w ) , B ( v , w + t ) = B ( v , w ) + B ( v , t ) . The metric tensor is a bilinear form, but in addition it has two properties:
g ( v , w ) = g ( w , v ) , g ( v , v ) ≥ 0. \begin{align*} g(\boldsymbol{v}, \boldsymbol{w}) &= g(\boldsymbol{w}, \boldsymbol{v}), \tag{symmetricity} \\ g(\boldsymbol{v}, \boldsymbol{v}) &\geq 0. \tag{positive or zero length} \end{align*} g ( v , w ) g ( v , v ) = g ( w , v ) , ≥ 0. ( symmetricity ) ( positive or zero length ) A curve may be broken up into small pieces:
and if we sum over the lengths these small pieces, we get the arc length L L L :
L ≈ ∑ i ∣ R ( λ + h ) − R ( λ ) ∣ L = lim h → 0 ∑ i ∣ R ( λ + h ) − R ( λ ) ∣ h h = ∫ ∣ d R d λ ∣ d λ , \begin{align*} L &\approx \sum_i |\boldsymbol{R}(\lambda + h) - \boldsymbol{R}(\lambda)| \\ L &= \lim_{h \to 0} \sum_i \frac{|\boldsymbol{R}(\lambda + h) - \boldsymbol{R}(\lambda)|}{h} h \\ &= \int \left|\frac{d\boldsymbol{R}}{d \lambda}\right| d\lambda, \end{align*} L L ≈ i ∑ ∣ R ( λ + h ) − R ( λ ) ∣ = h → 0 lim i ∑ h ∣ R ( λ + h ) − R ( λ ) ∣ h = ∫ d λ d R d λ , where d R d λ \frac{d\boldsymbol{R}}{d\lambda} d λ d R is the vector tangent to the curve. Its length squared is equal to:
∣ d R d λ ∣ 2 = d R d λ ⋅ d R d λ = ( ∂ R ∂ R μ d R μ d λ ) ⋅ ( ∂ R ∂ R ν d R ν d λ ) = d R μ d λ d R ν d λ ( ∂ R ∂ R μ ⋅ ∂ R ∂ R ν ) = d R μ d λ d R ν d λ ( e μ ⋅ e ν ) = d R μ d λ d R ν d λ g μ ν . \begin{align*} \left|\frac{d\boldsymbol{R}}{d \lambda}\right|^2 &= \frac{d \boldsymbol{R}}{d\lambda} \cdot \frac{d \boldsymbol{R}}{d\lambda} \\ &= \left(\frac{\partial \boldsymbol{R}}{\partial R^{\mu}} \frac{d R^{\mu}}{d \lambda}\right) \cdot \left(\frac{\partial \boldsymbol{R}}{\partial R^{\nu}} \frac{d R^{\nu}}{d \lambda}\right) \\ &= \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \left(\frac{\partial \boldsymbol{R}}{\partial R^{\mu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\nu}}\right) \\ &= \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \left(\boldsymbol{e_{\mu}} \cdot \boldsymbol{e_{\nu}}\right) \\ &= \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} g_{\mu \nu}. \end{align*} d λ d R 2 = d λ d R ⋅ d λ d R = ( ∂ R μ ∂ R d λ d R μ ) ⋅ ( ∂ R ν ∂ R d λ d R ν ) = d λ d R μ d λ d R ν ( ∂ R μ ∂ R ⋅ ∂ R ν ∂ R ) = d λ d R μ d λ d R ν ( e μ ⋅ e ν ) = d λ d R μ d λ d R ν g μν . We would like to find a way to relate the vectors v \boldsymbol{v} v from the vector space V V V and covectors from the dual space V ∗ V^* V ∗ . For a vector v \boldsymbol{v} v , we will introduce its "partner" covector v ⋅ _ \boldsymbol{v} \cdot \_ v ⋅ _ where _ \_ _ is a "slot" for another vector. This covector really is a member of V ∗ V^* V ∗ by the abstract definition:
v ⋅ _ : V → R , v ⋅ ( n a ) = n ( v ⋅ a ) , v ⋅ ( a + b ) = ( v ⋅ a ) + ( v ⋅ b ) , \begin{align*} \boldsymbol{v} \cdot \_: V \to \mathbb{R}, \\ \boldsymbol{v} \cdot (n\boldsymbol{a}) = n (\boldsymbol{v} \cdot \boldsymbol{a}), \\ \boldsymbol{v} \cdot (\boldsymbol{a} + \boldsymbol{b}) = (\boldsymbol{v} \cdot \boldsymbol{a}) + (\boldsymbol{v} \cdot \boldsymbol{b}), \end{align*} v ⋅ _ : V → R , v ⋅ ( n a ) = n ( v ⋅ a ) , v ⋅ ( a + b ) = ( v ⋅ a ) + ( v ⋅ b ) , and since it lives in the dual space V ∗ V^* V ∗ , we should be able to build it from the dual basis:
v ⋅ _ = v μ ϵ μ \boldsymbol{v} \cdot \_ = v_{\mu} \epsilon^{\mu} v ⋅ _ = v μ ϵ μ If we substitute w \boldsymbol{w} w into v ⋅ _ \boldsymbol{v} \cdot \_ v ⋅ _ :
v ⋅ w = g ( v , w ) = g α β ϵ α ϵ β ( v γ e γ , w δ e δ ) = g α β ϵ α ( v γ e γ ) ϵ β ( w δ e δ ) = g α β v γ w δ ϵ α ( e γ ) ϵ β ( e δ ) = g α β v γ w δ δ γ α δ δ β = g α β v α w β \begin{align*} \boldsymbol{v} \cdot \boldsymbol{w} &= g(\boldsymbol{v}, \boldsymbol{w}) \\ &= g_{\alpha \beta} \epsilon^{\alpha} \epsilon^{\beta} (v^{\gamma} \boldsymbol{e_{\gamma}}, w^{\delta} \boldsymbol{e_{\delta}}) \\ &= g_{\alpha \beta} \epsilon^{\alpha} (v^{\gamma} \boldsymbol{e_{\gamma}}) \epsilon^{\beta} (w^{\delta} \boldsymbol{e_{\delta}}) \\ &= g_{\alpha \beta} v^{\gamma} w^{\delta} \epsilon^{\alpha} (\boldsymbol{e_{\gamma}}) \epsilon^{\beta} (\boldsymbol{e_{\delta}}) \\ &= g_{\alpha \beta} v^{\gamma} w^{\delta} \delta^{\alpha}_{\gamma} \delta^{\beta}_{\delta} \\ &= g_{\alpha \beta} v^{\alpha} w^{\beta} \end{align*} v ⋅ w = g ( v , w ) = g α β ϵ α ϵ β ( v γ e γ , w δ e δ ) = g α β ϵ α ( v γ e γ ) ϵ β ( w δ e δ ) = g α β v γ w δ ϵ α ( e γ ) ϵ β ( e δ ) = g α β v γ w δ δ γ α δ δ β = g α β v α w β we arrive at the formula for dot product. If we instead not substitute anything and consider just v ⋅ _ \boldsymbol{v} \cdot \_ v ⋅ _ , we arrive at:
v ⋅ _ = g ( v , _ ) = g α β ϵ α ϵ β ( v γ e γ ) = g α β v γ ϵ α ϵ β ( e γ ) = g α β v γ ϵ α δ γ β = g α β v β ϵ α . \begin{align*} \boldsymbol{v} \cdot \_ &= g(\boldsymbol{v}, \_) \\ &= g_{\alpha \beta} \epsilon^{\alpha} \epsilon^{\beta} (v^{\gamma} \boldsymbol{e_{\gamma}}) \\ &= g_{\alpha \beta} v^{\gamma} \epsilon^{\alpha} \epsilon^{\beta} (\boldsymbol{e_{\gamma}}) \\ &= g_{\alpha \beta} v^{\gamma} \epsilon^{\alpha} \delta^{\beta}_{\gamma} \\ &= g_{\alpha \beta} v^{\beta} \epsilon^{\alpha}. \end{align*} v ⋅ _ = g ( v , _ ) = g α β ϵ α ϵ β ( v γ e γ ) = g α β v γ ϵ α ϵ β ( e γ ) = g α β v γ ϵ α δ γ β = g α β v β ϵ α . This is the component decomposition of v ⋅ _ \boldsymbol{v} \cdot \_ v ⋅ _ . Instead of writing g α β v β g_{\alpha \beta} v^{\beta} g α β v β , we can write v α v_{\alpha} v α :
v α = g α β v β , v ⋅ _ = v α ϵ α = g α β v β ϵ α . \begin{align*} v_{\alpha} &= g_{\alpha \beta} v^{\beta}, \\ \boldsymbol{v} \cdot \_ &= v_{\alpha} \epsilon^{\alpha} = g_{\alpha \beta} v^{\beta} \epsilon^{\alpha}. \end{align*} v α v ⋅ _ = g α β v β , = v α ϵ α = g α β v β ϵ α . Generally v μ ≠ v μ v_{\mu} \neq v^{\mu} v μ = v μ except in orthonormal basis.
We can lower an index. Now we need to figure out how to raise an index. For this, we will use the inverse metric g μ ν g^{\mu \nu} g μν defined as follows:
g α β g β γ = δ γ α . g^{\alpha \beta} g_{\beta \gamma} = \delta^{\alpha}_{\gamma}. g α β g β γ = δ γ α . The equation for covector components v α = g α β v β v_{\alpha} = g_{\alpha \beta} v^{\beta} v α = g α β v β . We can multiply both sides by g γ α g^{\gamma \alpha} g γ α :
g γ α v α = g γ α g α β v β = δ β γ v β = v γ . \begin{align*} g^{\gamma \alpha} v_{\alpha} &= g^{\gamma \alpha} g_{\alpha \beta} v^{\beta} \\ &= \delta^{\gamma}_{\beta} v^{\beta} \\ &= v^{\gamma}. \end{align*} g γ α v α = g γ α g α β v β = δ β γ v β = v γ . So to summarize:
v μ = g μ ν v ν , v μ = g μ ν v ν . \begin{align*} v_{\mu} &= g_{\mu \nu} v^{\nu}, \\ v^{\mu} &= g^{\mu \nu} v_{\nu}. \end{align*} v μ v μ = g μν v ν , = g μν v ν . Consider a point parametrized by the distance from the origin r r r and the angle θ \theta θ
From the diagram we can see:
x = r cos θ , y = r sin θ . \begin{align*} x &= r \cos \theta, \\ y &= r \sin \theta. \end{align*} x y = r cos θ , = r sin θ . The partial derivatives are:
∂ x ∂ r = cos θ , ∂ x ∂ θ = − r sin θ , ∂ y ∂ r = sin θ , ∂ y ∂ θ = r cos θ . \begin{align*} \frac{\partial x}{\partial r} &= \cos \theta, & \frac{\partial x}{\partial \theta} &= -r \sin \theta, \\ \frac{\partial y}{\partial r} &= \sin \theta, & \frac{\partial y}{\partial \theta} &= r \cos \theta. \end{align*} ∂ r ∂ x ∂ r ∂ y = cos θ , = sin θ , ∂ θ ∂ x ∂ θ ∂ y = − r sin θ , = r cos θ . The metric tensor in 2D Cartesian coordinates is the Kronecker delta δ μ ν \delta_{\mu \nu} δ μν , the polar metric tensor g ~ μ ν \tilde{g}_{\mu \nu} g ~ μν is equal to:
g ~ μ ν = ∂ x α ∂ x μ ∂ x β ∂ x ν g α β = ∂ x α ∂ x μ ∂ x β ∂ x ν δ α β = ∑ α ∂ x α ∂ x μ ∂ x α ∂ x ν . \begin{align*} \tilde{g}_{\mu \nu} &= \frac{\partial x^{\alpha}}{\partial x^{\mu}} \frac{\partial x^{\beta}}{\partial x^{\nu}} g_{\alpha \beta} \\ &= \frac{\partial x^{\alpha}}{\partial x^{\mu}} \frac{\partial x^{\beta}}{\partial x^{\nu}} \delta_{\alpha \beta} \\ &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial x^{\mu}} \frac{\partial x^{\alpha}}{\partial x^{\nu}}. \end{align*} g ~ μν = ∂ x μ ∂ x α ∂ x ν ∂ x β g α β = ∂ x μ ∂ x α ∂ x ν ∂ x β δ α β = α ∑ ∂ x μ ∂ x α ∂ x ν ∂ x α . The components of the polar metric tensor are equal to:
g ~ r r = ∑ α ∂ x α ∂ r ∂ x α ∂ r = cos 2 θ + sin 2 θ = 1 , g ~ r θ = g ~ θ r = ∑ α ∂ x α ∂ r ∂ x α ∂ θ = − r cos θ sin θ + r sin θ cos θ = 0 , g ~ θ θ = ∑ α ∂ x α ∂ θ ∂ x α ∂ θ = ( − r sin θ ) 2 + ( r cos θ ) 2 = r 2 sin 2 θ + r 2 cos 2 θ = r 2 , \begin{align*} \tilde{g}_{rr} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial r} \frac{\partial x^{\alpha}}{\partial r} \\ &= \cos^2 \theta + \sin^2 \theta \\ &= 1, \\ \tilde{g}_{r \theta} = \tilde{g}_{\theta r} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial r} \frac{\partial x^{\alpha}}{\partial \theta} \\ &= -r \cos \theta \sin \theta + r \sin \theta \cos \theta \\ &= 0, \\ \tilde{g}_{\theta \theta} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial \theta} \frac{\partial x^{\alpha}}{\partial \theta} \\ &= (-r \sin \theta)^2 + (r \cos \theta)^2 \\ &= r^2 \sin^2 \theta + r^2 \cos^2 \theta \\ &= r^2, \end{align*} g ~ rr g ~ r θ = g ~ θ r g ~ θθ = α ∑ ∂ r ∂ x α ∂ r ∂ x α = cos 2 θ + sin 2 θ = 1 , = α ∑ ∂ r ∂ x α ∂ θ ∂ x α = − r cos θ sin θ + r sin θ cos θ = 0 , = α ∑ ∂ θ ∂ x α ∂ θ ∂ x α = ( − r sin θ ) 2 + ( r cos θ ) 2 = r 2 sin 2 θ + r 2 cos 2 θ = r 2 , or in matrix notation:
g ~ μ ν = [ 1 0 0 r 2 ] . \tilde{g}_{\mu \nu} = \begin{bmatrix} 1 & 0 \\ 0 & r^2 \end{bmatrix}. g ~ μν = [ 1 0 0 r 2 ] . Consider the spherical coordinates where the coordinates are: r r r - the distance from the origin, θ \theta θ - the colatitude and ϕ \phi ϕ - the azimuthal angle:
We can start by solving for the cartesian coordinate z z z and the projection x y xy x y onto the x - y x\textrm{-}y x - y plane:
z = r cos θ , x y = r sin θ . \begin{align*} z &= r \cos \theta, \\ xy &= r \sin \theta. \end{align*} z x y = r cos θ , = r sin θ . And now we can solve fot the Cartesian coordinates x x x and y y y :
x = x y cos ϕ = r cos ϕ sin θ , y = x y sin ϕ = r sin ϕ sin θ . \begin{align*} x &= xy \cos \phi = r \cos \phi \sin \theta, \\ y &= xy \sin \phi = r \sin \phi \sin \theta. \\ \end{align*} x y = x y cos ϕ = r cos ϕ sin θ , = x y sin ϕ = r sin ϕ sin θ . Putting it all together, the Cartesian coordinates with the cartesian metric tensor g μ ν g_{\mu \nu} g μν are equal to:
x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ , g μ ν = δ μ ν = [ 1 0 0 0 1 0 0 0 1 ] . \begin{align*} x &= r \sin \theta \cos \phi, \\ y &= r \sin \theta \sin \phi, \\ z &= r \cos \theta, \\ g_{\mu \nu} &= \delta_{\mu \nu} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \end{align*} x y z g μν = r sin θ cos ϕ , = r sin θ sin ϕ , = r cos θ , = δ μν = 1 0 0 0 1 0 0 0 1 . The metric tensor g ~ μ ν \tilde{g}_{\mu \nu} g ~ μν for spherical coordinates is equal to:
g ~ μ ν = ∂ x α ∂ x ~ μ ∂ x β ∂ x ~ ν g α β = ∂ x α ∂ x ~ μ ∂ x β ∂ x ~ ν δ α β = ∑ α ∂ x α ∂ x ~ μ ∂ x α ∂ x ~ ν . \begin{align*} \tilde{g}_{\mu \nu} &= \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta} \\ &= \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} \delta_{\alpha \beta} \\ &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\nu}}. \end{align*} g ~ μν = ∂ x ~ μ ∂ x α ∂ x ~ ν ∂ x β g α β = ∂ x ~ μ ∂ x α ∂ x ~ ν ∂ x β δ α β = α ∑ ∂ x ~ μ ∂ x α ∂ x ~ ν ∂ x α . The partial derivatives in the transformation are equal to:
∂ x ∂ r = sin θ cos ϕ , ∂ x ∂ θ = r cos θ cos ϕ , ∂ x ∂ ϕ = − r sin θ sin ϕ , ∂ y ∂ r = sin θ sin ϕ , ∂ y ∂ θ = r cos θ sin ϕ , ∂ y ∂ ϕ = r sin θ cos ϕ , ∂ z ∂ r = cos θ , ∂ z ∂ θ = − r sin θ , ∂ z ∂ ϕ = 0. \begin{align*} \frac{\partial x}{\partial r} &= \sin \theta \cos \phi, & \frac{\partial x}{\partial \theta} &= r \cos \theta \cos \phi, & \frac{\partial x}{\partial \phi} &= -r \sin \theta \sin \phi, \\ \frac{\partial y}{\partial r} &= \sin \theta \sin \phi, & \frac{\partial y}{\partial \theta} &= r \cos \theta \sin \phi, & \frac{\partial y}{\partial \phi} &= r \sin \theta \cos \phi, \\ \frac{\partial z}{\partial r} &= \cos \theta, & \frac{\partial z}{\partial \theta} &= -r \sin \theta, & \frac{\partial z}{\partial \phi} &= 0. \end{align*} ∂ r ∂ x ∂ r ∂ y ∂ r ∂ z = sin θ cos ϕ , = sin θ sin ϕ , = cos θ , ∂ θ ∂ x ∂ θ ∂ y ∂ θ ∂ z = r cos θ cos ϕ , = r cos θ sin ϕ , = − r sin θ , ∂ ϕ ∂ x ∂ ϕ ∂ y ∂ ϕ ∂ z = − r sin θ sin ϕ , = r sin θ cos ϕ , = 0. Transforming the metric tensor components:
g ~ r r = ∑ α ∂ x α ∂ r ∂ x α ∂ r = ( sin θ cos ϕ ) 2 + ( sin θ sin ϕ ) 2 + ( cos θ ) 2 = sin 2 θ cos 2 ϕ + sin 2 θ sin 2 ϕ + cos 2 θ = sin 2 θ + cos 2 θ = 1 , g ~ r θ = g ~ θ r = ∑ α ∂ x α ∂ r ∂ x α ∂ θ = sin θ cos ϕ r cos θ cos ϕ + sin θ sin ϕ r cos θ sin ϕ − cos θ r sin θ = r sin θ cos θ ( cos 2 ϕ + sin 2 ϕ ) − r sin θ cos θ = r sin θ cos θ − r sin θ cos θ = 0 , g ~ r ϕ = g ~ ϕ r = ∑ α ∂ x α ∂ r ∂ x α ∂ ϕ = − sin θ cos ϕ r sin θ sin ϕ + sin θ sin ϕ r sin θ cos ϕ + cos θ 0 = − sin θ cos ϕ r sin θ sin ϕ + sin θ sin ϕ r sin θ cos ϕ + cos θ 0 = 0 , g ~ θ θ = ∑ α ∂ x α ∂ θ ∂ x α ∂ θ = ( r cos θ cos ϕ ) 2 + ( r cos θ sin ϕ ) 2 + ( − r sin θ ) 2 = r 2 cos 2 θ cos 2 ϕ + r 2 cos 2 θ sin 2 ϕ + r 2 sin 2 θ = r 2 cos 2 θ ( cos 2 ϕ + sin 2 ϕ ) + r 2 sin 2 θ = r 2 cos 2 θ + r 2 sin 2 θ = r 2 g ~ θ ϕ = g ~ ϕ θ = ∑ α ∂ x α ∂ θ ∂ x α ∂ ϕ = − r cos θ cos ϕ r sin θ sin ϕ + r cos θ sin ϕ r sin θ cos ϕ − r sin θ 0 = 0 , g ~ ϕ ϕ = ∑ α ∂ x α ∂ ϕ ∂ x α ∂ ϕ = ( − r sin θ sin ϕ ) 2 + ( r sin θ cos ϕ ) 2 + 0 2 = r 2 sin 2 θ sin 2 ϕ + r 2 sin 2 θ cos 2 ϕ = r 2 sin 2 θ ( sin 2 ϕ + cos 2 ϕ ) = r 2 sin 2 θ , \begin{align*} \tilde{g}_{r r} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial r} \frac{\partial x^{\alpha}}{\partial r} \\ &= (\sin \theta \cos \phi)^2 + (\sin \theta \sin \phi)^2 + (\cos \theta)^2 \\ &= \sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi + \cos^2 \theta \\ &= \sin^2 \theta + \cos^2 \theta \\ &= 1, \\ \tilde{g}_{r \theta} = \tilde{g}_{\theta r} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial r} \frac{\partial x^{\alpha}}{\partial \theta} \\ &= \sin \theta \cos \phi\ r \cos \theta \cos \phi + \sin \theta \sin \phi\ r \cos \theta \sin \phi - \cos \theta\ r \sin \theta \\ &= r \sin \theta \cos \theta (\cos^2 \phi + \sin^2 \phi) - r \sin \theta \cos \theta \\ &= r \sin \theta \cos \theta - r \sin \theta \cos \theta \\ &= 0, \\ \tilde{g}_{r \phi} = \tilde{g}_{\phi r} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial r} \frac{\partial x^{\alpha}}{\partial \phi} \\ &= -\sin \theta \cos \phi\ r \sin \theta \sin \phi + \sin \theta \sin \phi\ r \sin \theta \cos \phi + \cos \theta\ 0 \\ &= -\sin \theta \cos \phi\ r \sin \theta \sin \phi + \sin \theta \sin \phi\ r \sin \theta \cos \phi + \cos \theta\ 0 \\ &= 0, \\ \tilde{g}_{\theta \theta} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial \theta} \frac{\partial x^{\alpha}}{\partial \theta} \\ &= (r \cos \theta \cos \phi)^2 + (r \cos \theta \sin \phi)^2 + (- r \sin \theta)^2 \\ &= r^2 \cos^2 \theta \cos^2 \phi + r^2 \cos^2 \theta \sin^2 \phi + r^2 \sin^2 \theta \\ &= r^2 \cos^2 \theta (\cos^2 \phi + \sin^2 \phi) + r^2 \sin^2 \theta \\ &= r^2 \cos^2 \theta + r^2 \sin^2 \theta \\ &= r^2 \\ \tilde{g}_{\theta \phi} = \tilde{g}_{\phi \theta} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial \theta} \frac{\partial x^{\alpha}}{\partial \phi} \\ &= -r \cos \theta \cos \phi\ r \sin \theta \sin \phi + r \cos \theta \sin \phi\ r \sin \theta \cos \phi - r \sin \theta\ 0 \\ &= 0, \\ \tilde{g}_{\phi \phi} &= \sum_{\alpha} \frac{\partial x^{\alpha}}{\partial \phi} \frac{\partial x^{\alpha}}{\partial \phi} \\ &= (- r \sin \theta \sin \phi)^2 + (r \sin \theta \cos \phi)^2 + 0^2 \\ &= r^2 \sin^2 \theta \sin^2 \phi + r^2 \sin^2 \theta \cos^2 \phi \\ &= r^2 \sin^2 \theta (\sin^2 \phi + \cos^2 \phi) \\ &= r^2 \sin^2 \theta, \end{align*} g ~ rr g ~ r θ = g ~ θ r g ~ r ϕ = g ~ ϕ r g ~ θθ g ~ θϕ = g ~ ϕθ g ~ ϕϕ = α ∑ ∂ r ∂ x α ∂ r ∂ x α = ( sin θ cos ϕ ) 2 + ( sin θ sin ϕ ) 2 + ( cos θ ) 2 = sin 2 θ cos 2 ϕ + sin 2 θ sin 2 ϕ + cos 2 θ = sin 2 θ + cos 2 θ = 1 , = α ∑ ∂ r ∂ x α ∂ θ ∂ x α = sin θ cos ϕ r cos θ cos ϕ + sin θ sin ϕ r cos θ sin ϕ − cos θ r sin θ = r sin θ cos θ ( cos 2 ϕ + sin 2 ϕ ) − r sin θ cos θ = r sin θ cos θ − r sin θ cos θ = 0 , = α ∑ ∂ r ∂ x α ∂ ϕ ∂ x α = − sin θ cos ϕ r sin θ sin ϕ + sin θ sin ϕ r sin θ cos ϕ + cos θ 0 = − sin θ cos ϕ r sin θ sin ϕ + sin θ sin ϕ r sin θ cos ϕ + cos θ 0 = 0 , = α ∑ ∂ θ ∂ x α ∂ θ ∂ x α = ( r cos θ cos ϕ ) 2 + ( r cos θ sin ϕ ) 2 + ( − r sin θ ) 2 = r 2 cos 2 θ cos 2 ϕ + r 2 cos 2 θ sin 2 ϕ + r 2 sin 2 θ = r 2 cos 2 θ ( cos 2 ϕ + sin 2 ϕ ) + r 2 sin 2 θ = r 2 cos 2 θ + r 2 sin 2 θ = r 2 = α ∑ ∂ θ ∂ x α ∂ ϕ ∂ x α = − r cos θ cos ϕ r sin θ sin ϕ + r cos θ sin ϕ r sin θ cos ϕ − r sin θ 0 = 0 , = α ∑ ∂ ϕ ∂ x α ∂ ϕ ∂ x α = ( − r sin θ sin ϕ ) 2 + ( r sin θ cos ϕ ) 2 + 0 2 = r 2 sin 2 θ sin 2 ϕ + r 2 sin 2 θ cos 2 ϕ = r 2 sin 2 θ ( sin 2 ϕ + cos 2 ϕ ) = r 2 sin 2 θ , or in matrix notation:
g ~ μ ν = [ 1 0 0 0 r 2 0 0 0 r 2 sin 2 θ ] . \tilde{g}_{\mu \nu} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \\ \end{bmatrix}. g ~ μν = 1 0 0 0 r 2 0 0 0 r 2 sin 2 θ . In this section, I will refer to the spherical metric tensor as g μ ν g_{\mu \nu} g μν :
g μ ν = [ 1 0 0 0 r 2 0 0 0 r 2 sin 2 θ ] . g_{\mu \nu} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \\ \end{bmatrix}. g μν = 1 0 0 0 r 2 0 0 0 r 2 sin 2 θ . By keeping r r r constant, we get a parametric surface of sphere:
To represent coordinates, we choose a 2D θ - ϕ \theta\textrm{-}\phi θ - ϕ plane representing the θ \theta θ and ϕ \phi ϕ coordinates respectively:
where 0 ≤ θ ≤ π 0 \leq \theta \leq \pi 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2 π 0 \leq \phi \leq 2\pi 0 ≤ ϕ ≤ 2 π .
Consider a curve parametrized in the ϕ - θ \phi\textrm{-}\theta ϕ - θ plane as follows:
θ ( λ ) = λ , ϕ ( λ ) = λ , 0 ≤ λ ≤ π . \begin{align*} \theta(\lambda) &= \lambda, \\ \phi(\lambda) &= \lambda, \\ 0 \leq \lambda &\leq \pi. \end{align*} θ ( λ ) ϕ ( λ ) 0 ≤ λ = λ , = λ , ≤ π . Rendering, on our plane, the curve looks like this:
However, on the sphere, the curve looks like this:
We could naively calculate the length of the curve from the plane using Pythagorean theorem:
s = ϕ 2 + θ 2 = π 2 + π 2 = π 2 . s = \sqrt{\phi^2 + \theta^2} = \sqrt{\pi^2 + \pi^2} = \pi \sqrt{2}. s = ϕ 2 + θ 2 = π 2 + π 2 = π 2 . However, we always have to use the metric tensor:
s = ∫ 0 π ∣ d R d λ ∣ d λ = ∫ 0 π g μ ν d R μ d λ d R ν d λ d λ = ∫ 0 π g μ μ ( d R μ d λ ) 2 d λ = ∫ 0 π ( d r d λ ) 2 + r 2 ( d θ d λ ) 2 + r 2 sin 2 θ ( d ϕ d λ ) 2 d λ = ∫ 0 π r 2 + r 2 sin 2 θ d λ = r 2 ∫ 0 π 1 + sin 2 λ d λ ≈ 3.8202 r 2 ≠ π 2 . \begin{align*} s &= \int_0^{\pi} \left|\frac{d \boldsymbol{R}}{d \lambda}\right| d\lambda \\ &= \int_0^{\pi} \sqrt{g_{\mu \nu} \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda}} d\lambda \\ &= \int_0^{\pi} \sqrt{g_{\mu \mu} \left(\frac{d R^{\mu}}{d \lambda}\right)^2} d\lambda \\ &= \int_0^{\pi} \sqrt{\left(\frac{d r}{d \lambda}\right)^2 + r^2 \left(\frac{d \theta}{d \lambda}\right)^2 + r^2 \sin^2 \theta \left(\frac{d \phi}{d \lambda}\right)^2} d\lambda \\ &= \int_0^{\pi} \sqrt{r^2 + r^2 \sin^2 \theta} d\lambda \\ &= r^2 \int_0^{\pi} \sqrt{1 + \sin^2 \lambda}\ d\lambda \\ &\approx 3.8202 r^2 \neq \pi \sqrt{2}. \end{align*} s = ∫ 0 π d λ d R d λ = ∫ 0 π g μν d λ d R μ d λ d R ν d λ = ∫ 0 π g μμ ( d λ d R μ ) 2 d λ = ∫ 0 π ( d λ d r ) 2 + r 2 ( d λ d θ ) 2 + r 2 sin 2 θ ( d λ d ϕ ) 2 d λ = ∫ 0 π r 2 + r 2 sin 2 θ d λ = r 2 ∫ 0 π 1 + sin 2 λ d λ ≈ 3.8202 r 2 = π 2 . This is the extrinsic metric tensor - to work with 2D surface, we need three dimensions. To calculate curve lengths on the surface as if we are living on it (similar to Earth), we need to define an intrinsic metric tensor g ˉ μ ν \bar{g}_{\mu \nu} g ˉ μν .
To start, consider again a vector R \boldsymbol{R} R and we calculate its tangent vector:
d R d λ = d R μ d λ ∂ R ∂ R μ = d R μ d λ e ˉ μ , \frac{d \boldsymbol{R}}{d\lambda} = \frac{d R^{\mu}}{d \lambda} \frac{\partial \boldsymbol{R}}{\partial R^{\mu}} = \frac{d R^{\mu}}{d \lambda} \boldsymbol{\bar{e}_{\mu}}, d λ d R = d λ d R μ ∂ R μ ∂ R = d λ d R μ e ˉ μ , where e ˉ μ \boldsymbol{\bar{e}_{\mu}} e ˉ μ are basis vectors in the tangent plane: e ˉ θ \boldsymbol{\bar{e}_{\theta}} e ˉ θ and e ˉ ϕ \boldsymbol{\bar{e}_{\phi}} e ˉ ϕ . This notation is problematic, since R \boldsymbol{R} R lies outside the plane and we want to define extrinsic relationships. So instead I will be using derivative operators:
d d λ = d x ˉ μ d λ ∂ ∂ x ˉ μ = d x ˉ μ d λ e ˉ μ , \frac{d}{d\lambda} = \frac{d \bar{x}^{\mu}}{d \lambda} \frac{\partial}{\partial \bar{x}^{\mu}} = \frac{d \bar{x}^{\mu}}{d \lambda} \boldsymbol{\bar{e}_{\mu}}, d λ d = d λ d x ˉ μ ∂ x ˉ μ ∂ = d λ d x ˉ μ e ˉ μ , The squared length of the tangent vector is given by:
∣ d d λ ∣ 2 = ( d x ˉ μ d λ e ˉ μ ) ⋅ ( d x ˉ ν d λ e ˉ ν ) = d x ˉ μ d λ d x ˉ ν d λ g ˉ μ ν . \left|\frac{d}{d\lambda}\right|^2 = \left(\frac{d \bar{x}^{\mu}}{d \lambda} \boldsymbol{\bar{e}_{\mu}}\right) \cdot \left(\frac{d \bar{x}^{\nu}}{d \lambda} \boldsymbol{\bar{e}_{\nu}}\right) = \frac{d \bar{x}^{\mu}}{d \lambda} \frac{d \bar{x}^{\nu}}{d \lambda} \bar{g}_{\mu \nu}. d λ d 2 = ( d λ d x ˉ μ e ˉ μ ) ⋅ ( d λ d x ˉ ν e ˉ ν ) = d λ d x ˉ μ d λ d x ˉ ν g ˉ μν . To obtain the metric tensor components g ˉ μ ν = ∂ ∂ x ˉ μ ⋅ ∂ ∂ x ˉ ν \bar{g}_{\mu \nu} = \frac{\partial}{\partial \bar{x}^{\mu}} \cdot \frac{\partial}{\partial \bar{x}^{\nu}} g ˉ μν = ∂ x ˉ μ ∂ ⋅ ∂ x ˉ ν ∂ , we can write the intrinsic bases as linear combination of the extrinsic bases:
e ˉ μ = ∂ ∂ x ˉ μ = ∂ x ν ∂ x ˉ μ ∂ ∂ x ν = ∂ x ν ∂ x ˉ μ e ν , \boldsymbol{\bar{e}_{\mu}} = \frac{\partial}{\partial \bar{x}^{\mu}} = \frac{\partial x^{\nu}}{\partial \bar{x}^{\mu}} \frac{\partial}{\partial x^{\nu}} = \frac{\partial x^{\nu}}{\partial \bar{x}^{\mu}} \boldsymbol{e_{\nu}}, e ˉ μ = ∂ x ˉ μ ∂ = ∂ x ˉ μ ∂ x ν ∂ x ν ∂ = ∂ x ˉ μ ∂ x ν e ν , where x μ x^{\mu} x μ are the extrinsic coordinates (3D cartesian coordinates) and x ˉ μ \bar{x}^{\mu} x ˉ μ are the intrinsic coordinates (θ \theta θ and ϕ \phi ϕ ). We already calculated these derivatives (we will not be using the partial derivatives with respect to r r r since it is not an intrinsic coordinate):
∂ x ∂ θ = r cos θ cos ϕ , ∂ x ∂ ϕ = − r sin θ sin ϕ , ∂ y ∂ θ = r cos θ sin ϕ , ∂ y ∂ ϕ = r sin θ cos ϕ , ∂ z ∂ θ = − r sin θ , ∂ z ∂ ϕ = 0. \begin{align*} \frac{\partial x}{\partial \theta} &= r \cos \theta \cos \phi, & \frac{\partial x}{\partial \phi} &= -r \sin \theta \sin \phi, \\ \frac{\partial y}{\partial \theta} &= r \cos \theta \sin \phi, & \frac{\partial y}{\partial \phi} &= r \sin \theta \cos \phi, \\ \frac{\partial z}{\partial \theta} &= -r \sin \theta, & \frac{\partial z}{\partial \phi} &= 0. \end{align*} ∂ θ ∂ x ∂ θ ∂ y ∂ θ ∂ z = r cos θ cos ϕ , = r cos θ sin ϕ , = − r sin θ , ∂ ϕ ∂ x ∂ ϕ ∂ y ∂ ϕ ∂ z = − r sin θ sin ϕ , = r sin θ cos ϕ , = 0. The intrinsic basis vectors are equal to:
e ˉ θ = ∂ x ν ∂ x ˉ θ e ν = r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z , e ˉ ϕ = ∂ x ν ∂ x ˉ ϕ e ν = − r sin θ sin ϕ e x + r sin θ cos ϕ e y . \begin{align*} \boldsymbol{\bar{e}_{\theta}} &= \frac{\partial x^{\nu}}{\partial \bar{x}^{\theta}} \boldsymbol{e_{\nu}} \\ &= r \cos \theta \cos \phi \boldsymbol{e_x} + r \cos \theta \sin \phi \boldsymbol{e_y} - r \sin \theta \boldsymbol{e_z}, \\ \boldsymbol{\bar{e}_{\phi}} &= \frac{\partial x^{\nu}}{\partial \bar{x}^{\phi}} \boldsymbol{e_{\nu}} \\ &= -r \sin \theta \sin \phi \boldsymbol{e_x} + r \sin \theta \cos \phi \boldsymbol{e_y}. \end{align*} e ˉ θ e ˉ ϕ = ∂ x ˉ θ ∂ x ν e ν = r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z , = ∂ x ˉ ϕ ∂ x ν e ν = − r sin θ sin ϕ e x + r sin θ cos ϕ e y . Now we can calculate the intrinsic metric tensor components (since they are in Cartesian bases, the dot products are zero for e μ ⋅ e ν \boldsymbol{e_{\mu}} \cdot \boldsymbol{e_{\nu}} e μ ⋅ e ν when μ ≠ ν \mu \neq \nu μ = ν ):
g ˉ θ θ = e ˉ θ ⋅ e ˉ θ = ( r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z ) ⋅ ( r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z ) = r 2 cos 2 θ cos 2 ϕ + r 2 cos 2 θ sin 2 ϕ − r 2 sin 2 θ = r 2 cos 2 θ ( cos 2 ϕ + sin 2 ϕ ) − r 2 sin 2 θ = r 2 cos 2 θ − r 2 sin 2 θ = r 2 , g ˉ θ ϕ = g ˉ ϕ θ = e ˉ θ ⋅ e ˉ ϕ = ( r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z ) ⋅ ( − r sin θ sin ϕ e x + r sin θ cos ϕ e y + 0 e z ) = − r 2 cos θ sin θ cos ϕ sin ϕ + r 2 cos θ sin θ sin ϕ cos ϕ = 0 , g ˉ ϕ ϕ = e ˉ ϕ ⋅ e ˉ ϕ = ( − r sin θ sin ϕ e x + r sin θ cos ϕ e y ) ⋅ ( − r sin θ sin ϕ e x + r sin θ cos ϕ e y ) = r 2 sin 2 θ ( sin 2 ϕ + cos 2 ϕ ) = r 2 sin 2 θ , \begin{align*} \bar{g}_{\theta \theta} &= \boldsymbol{\bar{e}_{\theta}} \cdot \boldsymbol{\bar{e}_{\theta}} \\ &= (r \cos \theta \cos \phi \boldsymbol{e_x} + r \cos \theta \sin \phi \boldsymbol{e_y} - r \sin \theta \boldsymbol{e_z}) \cdot (r \cos \theta \cos \phi \boldsymbol{e_x} + r \cos \theta \sin \phi \boldsymbol{e_y} - r \sin \theta \boldsymbol{e_z}) \\ &= r^2 \cos^2 \theta \cos^2 \phi + r^2 \cos^2 \theta \sin^2 \phi - r^2 \sin^2 \theta \\ &= r^2 \cos^2 \theta (\cos^2 \phi + \sin^2 \phi) - r^2 \sin^2 \theta \\ &= r^2 \cos^2 \theta - r^2 \sin^2 \theta \\ &= r^2, \\ \bar{g}_{\theta \phi} = \bar{g}_{\phi \theta} &= \boldsymbol{\bar{e}_{\theta}} \cdot \boldsymbol{\bar{e}_{\phi}} \\ &= (r \cos \theta \cos \phi \boldsymbol{e_x} + r \cos \theta \sin \phi \boldsymbol{e_y} - r \sin \theta \boldsymbol{e_z}) \cdot (-r \sin \theta \sin \phi \boldsymbol{e_x} + r \sin \theta \cos \phi \boldsymbol{e_y} + 0 \boldsymbol{e_z}) \\ &= -r^2 \cos \theta \sin \theta \cos \phi \sin \phi + r^2 \cos \theta \sin \theta \sin \phi \cos \phi \\ &= 0, \\ \bar{g}_{\phi \phi} &= \boldsymbol{\bar{e}_{\phi}} \cdot \boldsymbol{\bar{e}_{\phi}} \\ &= (-r \sin \theta \sin \phi \boldsymbol{e_x} + r \sin \theta \cos \phi \boldsymbol{e_y}) \cdot (-r \sin \theta \sin \phi \boldsymbol{e_x} + r \sin \theta \cos \phi \boldsymbol{e_y}) \\ &= r^2 \sin^2 \theta (\sin^2 \phi + \cos^2 \phi) \\ &= r^2 \sin^2 \theta, \end{align*} g ˉ θθ g ˉ θϕ = g ˉ ϕθ g ˉ ϕϕ = e ˉ θ ⋅ e ˉ θ = ( r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z ) ⋅ ( r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z ) = r 2 cos 2 θ cos 2 ϕ + r 2 cos 2 θ sin 2 ϕ − r 2 sin 2 θ = r 2 cos 2 θ ( cos 2 ϕ + sin 2 ϕ ) − r 2 sin 2 θ = r 2 cos 2 θ − r 2 sin 2 θ = r 2 , = e ˉ θ ⋅ e ˉ ϕ = ( r cos θ cos ϕ e x + r cos θ sin ϕ e y − r sin θ e z ) ⋅ ( − r sin θ sin ϕ e x + r sin θ cos ϕ e y + 0 e z ) = − r 2 cos θ sin θ cos ϕ sin ϕ + r 2 cos θ sin θ sin ϕ cos ϕ = 0 , = e ˉ ϕ ⋅ e ˉ ϕ = ( − r sin θ sin ϕ e x + r sin θ cos ϕ e y ) ⋅ ( − r sin θ sin ϕ e x + r sin θ cos ϕ e y ) = r 2 sin 2 θ ( sin 2 ϕ + cos 2 ϕ ) = r 2 sin 2 θ , or represented as matrix:
g ˉ μ ν = [ r 2 0 0 r 2 sin 2 θ ] . \bar{g}_{\mu \nu} = \begin{bmatrix} r^2 & 0 \\ 0 & r^2 \sin^2 \theta \end{bmatrix}. g ˉ μν = [ r 2 0 0 r 2 sin 2 θ ] . If we now use the previous curve defined as follows:
θ ( λ ) = λ , ϕ ( λ ) = λ , 0 ≤ λ ≤ π , \begin{align*} \theta(\lambda) &= \lambda, \\ \phi(\lambda) &= \lambda, \\ 0 \leq \lambda &\leq \pi, \end{align*} θ ( λ ) ϕ ( λ ) 0 ≤ λ = λ , = λ , ≤ π , and calculate the length of the curve, we arrive at the same answer:
s = ∫ 0 π ∣ d d λ ∣ d λ = ∫ 0 π g ˉ μ ν d x ˉ μ d λ d x ˉ ν d λ d λ = ∫ 0 π g ˉ μ μ ( d x ˉ μ d λ ) 2 d λ = ∫ 0 π r 2 ( d θ d λ ) 2 + r 2 sin 2 θ ( d ϕ d λ ) 2 d λ = ∫ 0 π r 2 + r 2 sin 2 θ d λ = r 2 ∫ 0 π 1 + sin 2 λ d λ ≈ 3.8202 r 2 . \begin{align*} s &= \int_0^{\pi} \left|\frac{d}{d \lambda}\right| d\lambda \\ &= \int_0^{\pi} \sqrt{\bar{g}_{\mu \nu} \frac{d \bar{x}^{\mu}}{d \lambda} \frac{d \bar{x}^{\nu}}{d \lambda}} d\lambda \\ &= \int_0^{\pi} \sqrt{\bar{g}_{\mu \mu} \left(\frac{d \bar{x}^{\mu}}{d \lambda}\right)^2} d\lambda \\ &= \int_0^{\pi} \sqrt{r^2 \left(\frac{d \theta}{d \lambda}\right)^2 + r^2 \sin^2 \theta \left(\frac{d \phi}{d \lambda}\right)^2} d\lambda \\ &= \int_0^{\pi} \sqrt{r^2 + r^2 \sin^2 \theta} d\lambda \\ &= r^2 \int_0^{\pi} \sqrt{1 + \sin^2 \lambda}\ d\lambda \\ &\approx 3.8202 r^2. \end{align*} s = ∫ 0 π d λ d d λ = ∫ 0 π g ˉ μν d λ d x ˉ μ d λ d x ˉ ν d λ = ∫ 0 π g ˉ μμ ( d λ d x ˉ μ ) 2 d λ = ∫ 0 π r 2 ( d λ d θ ) 2 + r 2 sin 2 θ ( d λ d ϕ ) 2 d λ = ∫ 0 π r 2 + r 2 sin 2 θ d λ = r 2 ∫ 0 π 1 + sin 2 λ d λ ≈ 3.8202 r 2 . To calculate the intrinsic metric tensor, we have to either:
use the extrinsic basis, invent it from our imagination, obtain it from another equation (e.g. Einstein field equations).