Back

Interpretation of the Schwarzschild Coordinates

The metric is in the form:

ds2=(12r)dt2+(12r)1dr2+r2dϕ2.ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2.

For constant (r,θ,ϕ)(r, \theta, \phi) the metric reduces to:

ds2=(12r)dt2.ds^2 = -\left(1 - \frac{2}{r}\right) dt^2.

For timelike paths, this is equal to the negative proper time τ\tau:

dτ2=(12r)dt2,dτ2=(12r)dt2,dτ=12rdt,0τdτ=12r0tdt,τ=12rt. \begin{align*} -d\tau^2 &= -\left(1 - \frac{2}{r}\right) dt^2, \\ d\tau^2 &= \left(1 - \frac{2}{r}\right) dt^2, \\ d\tau &= \sqrt{1 - \frac{2}{r}} dt, \\ \int_0^{\tau} d\tau &= \sqrt{1 - \frac{2}{r}} \int_0^t dt, \\ \tau &= \sqrt{1 - \frac{2}{r}} t. \\ \end{align*}

Below is a table evaluating the time dilation at different rr coordinates:

r\boldsymbol{r}τ\boldsymbol{\tau}
rsr_s00
2rs2r_s0.71t\approx 0.71t
\inftytt
τ=NaN\tau = NaN

For proper length, we will take t,θ,ϕt, \theta, \phi to be constant. The path will be a straight line from the center. The metric simplifies:

ds2=(12r)1dr2.ds^2 = \left(1 - \frac{2}{r}\right)^{-1} dr^2.

For spacelike paths, this is equal to the proper length:

dL02=(r2r)1dr2,dL0=rr2dr,0L0dL0=r0rrr2dr,L0=r0rrr2dr,r=u2,dr=2u du,u=r,L0=r0ru2u222u du=2r0ru2u22du,u=2y,du=2 dy,y=u2,L0=2r02r22y22y222 dy=4r02r2y22y212 dy=4r02r2y2y21dy,y=coshα,dy=sinhα dα,α=cosh1y,L0=4cosh1r02cosh1r2cosh2αcosh2α1sinhα dα=4cosh1r02cosh1r2cosh2α dα=4cosh1r02cosh1r2cosh2α+12dα=cosh1r02cosh1r22(cosh2α+1) dα,β=2α,dβ=2 dα,L0=2cosh1r022cosh1r2(coshβ+1) dβ=[sinhβ+β]2cosh1r022cosh1r2. \begin{align*} dL_0{}^2 &= \left(\frac{r - 2}{r}\right)^{-1} dr^2, \\ dL_0 &= \sqrt{\frac{r}{r - 2}} dr, \\ \int_0^{L_0} dL_0 &= \int_{r_0}^r \sqrt{\frac{r}{r - 2}} dr, \\ L_0 &= \int_{r_0}^r \sqrt{\frac{r}{r - 2}} dr, \\ r &= u^2, \\ dr &= 2u\ du, \\ u &= \sqrt{r}, \\ L_0 &= \int_{\sqrt{r_0}}^{\sqrt{r}} \sqrt{\frac{u^2}{u^2 - 2}} 2u\ du \\ &= 2 \int_{\sqrt{r_0}}^{\sqrt{r}} \frac{u^2}{\sqrt{u^2 - 2}} du, \\ u &= \sqrt{2} y, \\ du &= \sqrt{2}\ dy, \\ y &= \frac{u}{\sqrt{2}}, \\ L_0 &= 2 \int_{\sqrt{\frac{r_0}{2}}}^{\sqrt{\frac{r}{2}}} \frac{2y^2}{\sqrt{2y^2 - 2}} \sqrt{2}\ dy \\ &= 4 \int_{\sqrt{\frac{r_0}{2}}}^{\sqrt{\frac{r}{2}}} \frac{y^2}{\sqrt{2} \sqrt{y^2 - 1}} \sqrt{2}\ dy \\ &= 4 \int_{\sqrt{\frac{r_0}{2}}}^{\sqrt{\frac{r}{2}}} \frac{y^2}{\sqrt{y^2 - 1}} dy, \\ y &= \cosh \alpha, \\ dy &= \sinh \alpha\ d\alpha, \\ \alpha &= \cosh^{-1} y, \\ L_0 &= 4 \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} \frac{\cosh^2 {\alpha}}{\sqrt{\cosh^2 \alpha - 1}} \sinh \alpha\ d\alpha \\ &= 4 \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} \cosh^2 {\alpha}\ d\alpha \\ &= 4 \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} \frac{\cosh 2\alpha + 1}{2} d\alpha \\ &= \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} 2 (\cosh 2\alpha + 1)\ d\alpha, \\ \beta &= 2 \alpha, \\ d\beta &= 2\ d\alpha, \\ L_0 &= \int_{2\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{2\cosh^{-1} \sqrt{\frac{r}{2}}} (\cosh \beta + 1)\ d\beta \\ &= \left[\sinh \beta + \beta\right]_{2\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{2\cosh^{-1} \sqrt{\frac{r}{2}}}. \\ \end{align*}

The magnitude of rr is smaller than the proper length. Below is a plot of the proper length:

Proper length plot

The function is approximately linear at a distance further away from the object.

Δr=0 m,L0=NaN10NaN m=NaN10NaNΔr m. \begin{align*} \Delta r &= 0\ m, \\ L_0 &= NaN \cdot 10^{NaN}\ m = NaN \cdot 10^{NaN}\Delta r\ m. \end{align*}

For the proper length of circumference, we will take t,r,θt, r, \theta to be constant. The metric simplifies:

ds2=r2dϕ2.ds^2 = r^2 d\phi^2.

As for the radius, this is equal to the proper length:

dL02=r2dϕ2,dL0=rdϕ,0L0dL0=r02πdϕ,L0=2πr. \begin{align*} dL_0{}^2 &= r^2 d\phi^2, \\ dL_0 &= r d\phi, \\ \int_0^{L_0} dL_0 &= r \int_{0}^{2 \pi} d\phi, \\ L_0 &= 2 \pi r. \end{align*}

The rr coordinate accurately gives the proper length of the circumference. But for the distance from the center the proper length is longer the closer an observer is to the object.

We will take constant t,θt, \theta. The metric is in the form:

ds2=(12r)1dr2+r2dϕ2.ds^2 = \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2.

We will begin by considering the cylindrical coordinates:

ds2=dr2+r2dϕ2+dz2,ds2=((dzdr)2+1)dr2+r2dϕ2, \begin{align*} ds^2 &= dr^2 + r^2 d\phi^2 + dz^2, \\ ds^2 &= \left(\left(\frac{dz}{dr}\right)^2 + 1\right) dr^2 + r^2 d\phi^2, \end{align*}

and make the line elements equal and solve for zz:

(12r)1dr2+r2dϕ2=((dzdr)2+1)dr2+r2dϕ2,(r2r)1dr2=((dzdr)2+1)dr2,(dzdr)2+1=rr2,(dzdr)2=rr21=2r2,dzdr=2r2,z0zdz=r0r2r2dr,zz0=22[r2]r0r,z=22[r2]r0r+z0, \begin{align*} \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2 &= \left(\left(\frac{dz}{dr}\right)^2 + 1\right) dr^2 + r^2 d\phi^2, \\ \left(\frac{r - 2}{r}\right)^{-1} dr^2 &= \left(\left(\frac{dz}{dr}\right)^2 + 1\right) dr^2, \\ \left(\frac{dz}{dr}\right)^2 + 1 &= \frac{r}{r - 2}, \\ \left(\frac{dz}{dr}\right)^2 &= \frac{r}{r - 2} - 1 \\ &= \frac{2}{r - 2}, \\ \frac{dz}{dr} &= \sqrt{\frac{2}{r - 2}}, \\ \int_{z_0}^z dz &= \int_{r_0}^r \sqrt{\frac{2}{r - 2}} dr, \\ z - z_0 &= 2 \sqrt{2} [\sqrt{r - 2}]_{r_0}^r, \\ z &= 2 \sqrt{2} [\sqrt{r - 2}]_{r_0}^r + z_0, \\ \end{align*}

where z0z_0 is the zz when r=r0r = r_0. This is the equation for the Flamm's paraboloid:

Flamm's paraboloid render

here, r0=2r_0 = 2 and z0=0z_0 = 0.

There are two singularities. The first one is in the g11g_{11} component when rrs+r \to r_s^+:

limrrs+g11=limr2+(12r)1=limr2+rr2=, \begin{align*} \lim_{r \to r_s^+} g_{11} &= \lim_{r \to 2^+} \left(1 - \frac{2}{r}\right)^{-1} \\ &= \lim_{r \to 2^+} \frac{r}{r - 2} = \infty, \end{align*}

this is a coordinate singularity. We can get rid of it by changing coordinates. The other singularity is in the g00g_{00} copmonent as r0+r \to 0^+:

limr0+g00=limr0+(12r)=limr0+2rr=, \begin{align*} \lim_{r \to 0^+} g_{00} &= \lim_{r \to 0^+} - \left(1 - \frac{2}{r}\right) \\ &= \lim_{r \to 0^+} \frac{2 - r}{r} = \infty, \end{align*}

this, unfortunately, is a true singularity and at this point general relativity stops making sense.