Back Interpretation of the Schwarzschild Coordinates The metric is in the form:
d s 2 = − ( 1 − 2 r ) d t 2 + ( 1 − 2 r ) − 1 d r 2 + r 2 d ϕ 2 . ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2. d s 2 = − ( 1 − r 2 ) d t 2 + ( 1 − r 2 ) − 1 d r 2 + r 2 d ϕ 2 . For constant ( r , θ , ϕ ) (r, \theta, \phi) ( r , θ , ϕ ) the metric reduces to:
d s 2 = − ( 1 − 2 r ) d t 2 . ds^2 = -\left(1 - \frac{2}{r}\right) dt^2. d s 2 = − ( 1 − r 2 ) d t 2 . For timelike paths, this is equal to the negative proper time τ \tau τ :
− d τ 2 = − ( 1 − 2 r ) d t 2 , d τ 2 = ( 1 − 2 r ) d t 2 , d τ = 1 − 2 r d t , ∫ 0 τ d τ = 1 − 2 r ∫ 0 t d t , τ = 1 − 2 r t . \begin{align*} -d\tau^2 &= -\left(1 - \frac{2}{r}\right) dt^2, \\ d\tau^2 &= \left(1 - \frac{2}{r}\right) dt^2, \\ d\tau &= \sqrt{1 - \frac{2}{r}} dt, \\ \int_0^{\tau} d\tau &= \sqrt{1 - \frac{2}{r}} \int_0^t dt, \\ \tau &= \sqrt{1 - \frac{2}{r}} t. \\ \end{align*} − d τ 2 d τ 2 d τ ∫ 0 τ d τ τ = − ( 1 − r 2 ) d t 2 , = ( 1 − r 2 ) d t 2 , = 1 − r 2 d t , = 1 − r 2 ∫ 0 t d t , = 1 − r 2 t . Below is a table evaluating the time dilation at different r r r coordinates:
r \boldsymbol{r} r τ \boldsymbol{\tau} τ r s r_s r s 0 0 0 2 r s 2r_s 2 r s ≈ 0.71 t \approx 0.71t ≈ 0.71 t ∞ \infty ∞ t t t
For proper length, we will take t , θ , ϕ t, \theta, \phi t , θ , ϕ to be constant. The path will be a straight line from the center. The metric simplifies:
d s 2 = ( 1 − 2 r ) − 1 d r 2 . ds^2 = \left(1 - \frac{2}{r}\right)^{-1} dr^2. d s 2 = ( 1 − r 2 ) − 1 d r 2 . For spacelike paths, this is equal to the proper length:
d L 0 2 = ( r − 2 r ) − 1 d r 2 , d L 0 = r r − 2 d r , ∫ 0 L 0 d L 0 = ∫ r 0 r r r − 2 d r , L 0 = ∫ r 0 r r r − 2 d r , r = u 2 , d r = 2 u d u , u = r , L 0 = ∫ r 0 r u 2 u 2 − 2 2 u d u = 2 ∫ r 0 r u 2 u 2 − 2 d u , u = 2 y , d u = 2 d y , y = u 2 , L 0 = 2 ∫ r 0 2 r 2 2 y 2 2 y 2 − 2 2 d y = 4 ∫ r 0 2 r 2 y 2 2 y 2 − 1 2 d y = 4 ∫ r 0 2 r 2 y 2 y 2 − 1 d y , y = cosh α , d y = sinh α d α , α = cosh − 1 y , L 0 = 4 ∫ cosh − 1 r 0 2 cosh − 1 r 2 cosh 2 α cosh 2 α − 1 sinh α d α = 4 ∫ cosh − 1 r 0 2 cosh − 1 r 2 cosh 2 α d α = 4 ∫ cosh − 1 r 0 2 cosh − 1 r 2 cosh 2 α + 1 2 d α = ∫ cosh − 1 r 0 2 cosh − 1 r 2 2 ( cosh 2 α + 1 ) d α , β = 2 α , d β = 2 d α , L 0 = ∫ 2 cosh − 1 r 0 2 2 cosh − 1 r 2 ( cosh β + 1 ) d β = [ sinh β + β ] 2 cosh − 1 r 0 2 2 cosh − 1 r 2 . \begin{align*} dL_0{}^2 &= \left(\frac{r - 2}{r}\right)^{-1} dr^2, \\ dL_0 &= \sqrt{\frac{r}{r - 2}} dr, \\ \int_0^{L_0} dL_0 &= \int_{r_0}^r \sqrt{\frac{r}{r - 2}} dr, \\ L_0 &= \int_{r_0}^r \sqrt{\frac{r}{r - 2}} dr, \\ r &= u^2, \\ dr &= 2u\ du, \\ u &= \sqrt{r}, \\ L_0 &= \int_{\sqrt{r_0}}^{\sqrt{r}} \sqrt{\frac{u^2}{u^2 - 2}} 2u\ du \\ &= 2 \int_{\sqrt{r_0}}^{\sqrt{r}} \frac{u^2}{\sqrt{u^2 - 2}} du, \\ u &= \sqrt{2} y, \\ du &= \sqrt{2}\ dy, \\ y &= \frac{u}{\sqrt{2}}, \\ L_0 &= 2 \int_{\sqrt{\frac{r_0}{2}}}^{\sqrt{\frac{r}{2}}} \frac{2y^2}{\sqrt{2y^2 - 2}} \sqrt{2}\ dy \\ &= 4 \int_{\sqrt{\frac{r_0}{2}}}^{\sqrt{\frac{r}{2}}} \frac{y^2}{\sqrt{2} \sqrt{y^2 - 1}} \sqrt{2}\ dy \\ &= 4 \int_{\sqrt{\frac{r_0}{2}}}^{\sqrt{\frac{r}{2}}} \frac{y^2}{\sqrt{y^2 - 1}} dy, \\ y &= \cosh \alpha, \\ dy &= \sinh \alpha\ d\alpha, \\ \alpha &= \cosh^{-1} y, \\ L_0 &= 4 \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} \frac{\cosh^2 {\alpha}}{\sqrt{\cosh^2 \alpha - 1}} \sinh \alpha\ d\alpha \\ &= 4 \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} \cosh^2 {\alpha}\ d\alpha \\ &= 4 \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} \frac{\cosh 2\alpha + 1}{2} d\alpha \\ &= \int_{\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{\cosh^{-1} \sqrt{\frac{r}{2}}} 2 (\cosh 2\alpha + 1)\ d\alpha, \\ \beta &= 2 \alpha, \\ d\beta &= 2\ d\alpha, \\ L_0 &= \int_{2\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{2\cosh^{-1} \sqrt{\frac{r}{2}}} (\cosh \beta + 1)\ d\beta \\ &= \left[\sinh \beta + \beta\right]_{2\cosh^{-1} \sqrt{\frac{r_0}{2}}}^{2\cosh^{-1} \sqrt{\frac{r}{2}}}. \\ \end{align*} d L 0 2 d L 0 ∫ 0 L 0 d L 0 L 0 r d r u L 0 u d u y L 0 y d y α L 0 β d β L 0 = ( r r − 2 ) − 1 d r 2 , = r − 2 r d r , = ∫ r 0 r r − 2 r d r , = ∫ r 0 r r − 2 r d r , = u 2 , = 2 u d u , = r , = ∫ r 0 r u 2 − 2 u 2 2 u d u = 2 ∫ r 0 r u 2 − 2 u 2 d u , = 2 y , = 2 d y , = 2 u , = 2 ∫ 2 r 0 2 r 2 y 2 − 2 2 y 2 2 d y = 4 ∫ 2 r 0 2 r 2 y 2 − 1 y 2 2 d y = 4 ∫ 2 r 0 2 r y 2 − 1 y 2 d y , = cosh α , = sinh α d α , = cosh − 1 y , = 4 ∫ c o s h − 1 2 r 0 c o s h − 1 2 r cosh 2 α − 1 cosh 2 α sinh α d α = 4 ∫ c o s h − 1 2 r 0 c o s h − 1 2 r cosh 2 α d α = 4 ∫ c o s h − 1 2 r 0 c o s h − 1 2 r 2 cosh 2 α + 1 d α = ∫ c o s h − 1 2 r 0 c o s h − 1 2 r 2 ( cosh 2 α + 1 ) d α , = 2 α , = 2 d α , = ∫ 2 c o s h − 1 2 r 0 2 c o s h − 1 2 r ( cosh β + 1 ) d β = [ sinh β + β ] 2 c o s h − 1 2 r 0 2 c o s h − 1 2 r . The magnitude of r r r is smaller than the proper length. Below is a plot of the proper length:
The function is approximately linear at a distance further away from the object.
For the proper length of circumference, we will take t , r , θ t, r, \theta t , r , θ to be constant. The metric simplifies:
d s 2 = r 2 d ϕ 2 . ds^2 = r^2 d\phi^2. d s 2 = r 2 d ϕ 2 . As for the radius, this is equal to the proper length:
d L 0 2 = r 2 d ϕ 2 , d L 0 = r d ϕ , ∫ 0 L 0 d L 0 = r ∫ 0 2 π d ϕ , L 0 = 2 π r . \begin{align*} dL_0{}^2 &= r^2 d\phi^2, \\ dL_0 &= r d\phi, \\ \int_0^{L_0} dL_0 &= r \int_{0}^{2 \pi} d\phi, \\ L_0 &= 2 \pi r. \end{align*} d L 0 2 d L 0 ∫ 0 L 0 d L 0 L 0 = r 2 d ϕ 2 , = r d ϕ , = r ∫ 0 2 π d ϕ , = 2 π r . The r r r coordinate accurately gives the proper length of the circumference. But for the distance from the center the proper length is longer the closer an observer is to the object.
We will take constant t , θ t, \theta t , θ . The metric is in the form:
d s 2 = ( 1 − 2 r ) − 1 d r 2 + r 2 d ϕ 2 . ds^2 = \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2. d s 2 = ( 1 − r 2 ) − 1 d r 2 + r 2 d ϕ 2 . We will begin by considering the cylindrical coordinates:
d s 2 = d r 2 + r 2 d ϕ 2 + d z 2 , d s 2 = ( ( d z d r ) 2 + 1 ) d r 2 + r 2 d ϕ 2 , \begin{align*} ds^2 &= dr^2 + r^2 d\phi^2 + dz^2, \\ ds^2 &= \left(\left(\frac{dz}{dr}\right)^2 + 1\right) dr^2 + r^2 d\phi^2, \end{align*} d s 2 d s 2 = d r 2 + r 2 d ϕ 2 + d z 2 , = ( ( d r d z ) 2 + 1 ) d r 2 + r 2 d ϕ 2 , and make the line elements equal and solve for z z z :
( 1 − 2 r ) − 1 d r 2 + r 2 d ϕ 2 = ( ( d z d r ) 2 + 1 ) d r 2 + r 2 d ϕ 2 , ( r − 2 r ) − 1 d r 2 = ( ( d z d r ) 2 + 1 ) d r 2 , ( d z d r ) 2 + 1 = r r − 2 , ( d z d r ) 2 = r r − 2 − 1 = 2 r − 2 , d z d r = 2 r − 2 , ∫ z 0 z d z = ∫ r 0 r 2 r − 2 d r , z − z 0 = 2 2 [ r − 2 ] r 0 r , z = 2 2 [ r − 2 ] r 0 r + z 0 , \begin{align*} \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2 &= \left(\left(\frac{dz}{dr}\right)^2 + 1\right) dr^2 + r^2 d\phi^2, \\ \left(\frac{r - 2}{r}\right)^{-1} dr^2 &= \left(\left(\frac{dz}{dr}\right)^2 + 1\right) dr^2, \\ \left(\frac{dz}{dr}\right)^2 + 1 &= \frac{r}{r - 2}, \\ \left(\frac{dz}{dr}\right)^2 &= \frac{r}{r - 2} - 1 \\ &= \frac{2}{r - 2}, \\ \frac{dz}{dr} &= \sqrt{\frac{2}{r - 2}}, \\ \int_{z_0}^z dz &= \int_{r_0}^r \sqrt{\frac{2}{r - 2}} dr, \\ z - z_0 &= 2 \sqrt{2} [\sqrt{r - 2}]_{r_0}^r, \\ z &= 2 \sqrt{2} [\sqrt{r - 2}]_{r_0}^r + z_0, \\ \end{align*} ( 1 − r 2 ) − 1 d r 2 + r 2 d ϕ 2 ( r r − 2 ) − 1 d r 2 ( d r d z ) 2 + 1 ( d r d z ) 2 d r d z ∫ z 0 z d z z − z 0 z = ( ( d r d z ) 2 + 1 ) d r 2 + r 2 d ϕ 2 , = ( ( d r d z ) 2 + 1 ) d r 2 , = r − 2 r , = r − 2 r − 1 = r − 2 2 , = r − 2 2 , = ∫ r 0 r r − 2 2 d r , = 2 2 [ r − 2 ] r 0 r , = 2 2 [ r − 2 ] r 0 r + z 0 , where z 0 z_0 z 0 is the z z z when r = r 0 r = r_0 r = r 0 . This is the equation for the Flamm's paraboloid:
here, r 0 = 2 r_0 = 2 r 0 = 2 and z 0 = 0 z_0 = 0 z 0 = 0 .
There are two singularities. The first one is in the g 11 g_{11} g 11 component when r → r s + r \to r_s^+ r → r s + :
lim r → r s + g 11 = lim r → 2 + ( 1 − 2 r ) − 1 = lim r → 2 + r r − 2 = ∞ , \begin{align*} \lim_{r \to r_s^+} g_{11} &= \lim_{r \to 2^+} \left(1 - \frac{2}{r}\right)^{-1} \\ &= \lim_{r \to 2^+} \frac{r}{r - 2} = \infty, \end{align*} r → r s + lim g 11 = r → 2 + lim ( 1 − r 2 ) − 1 = r → 2 + lim r − 2 r = ∞ , this is a coordinate singularity. We can get rid of it by changing coordinates. The other singularity is in the g 00 g_{00} g 00 copmonent as r → 0 + r \to 0^+ r → 0 + :
lim r → 0 + g 00 = lim r → 0 + − ( 1 − 2 r ) = lim r → 0 + 2 − r r = ∞ , \begin{align*} \lim_{r \to 0^+} g_{00} &= \lim_{r \to 0^+} - \left(1 - \frac{2}{r}\right) \\ &= \lim_{r \to 0^+} \frac{2 - r}{r} = \infty, \end{align*} r → 0 + lim g 00 = r → 0 + lim − ( 1 − r 2 ) = r → 0 + lim r 2 − r = ∞ , this, unfortunately, is a true singularity and at this point general relativity stops making sense.