Back Geodesics The metric and geodesic equations are in the form:
d s 2 = − ( 1 − 2 r ) d t 2 + ( 1 − 2 r ) − 1 d r 2 + r 2 d ϕ 2 , d 2 t d λ 2 + 2 r ( r − 2 ) d t d λ d r d λ = 0 , d 2 r d λ 2 + r − 2 r 3 ( d t d λ ) 2 − 1 r ( r − 2 ) ( d r d λ ) 2 − ( r − 2 ) ( d ϕ d λ ) 2 = 0 , d 2 ϕ d λ 2 + 2 r d r d λ d ϕ d λ = 0. \begin{align*} ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2, \\ \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \\ \frac{d^2 r}{d\lambda^2} + \frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 - \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 - (r - 2) \left(\frac{d\phi}{d\lambda}\right)^2 &= 0, \\ \frac{d^2 \phi}{d\lambda^2} + \frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda} &= 0. \end{align*} d s 2 = − ( 1 − r 2 ) d t 2 + ( 1 − r 2 ) − 1 d r 2 + r 2 d ϕ 2 , d λ 2 d 2 t + r ( r − 2 ) 2 d λ d t d λ d r d λ 2 d 2 r + r 3 r − 2 ( d λ d t ) 2 − r ( r − 2 ) 1 ( d λ d r ) 2 − ( r − 2 ) ( d λ d ϕ ) 2 d λ 2 d 2 ϕ + r 2 d λ d r d λ d ϕ = 0 , = 0 , = 0. For incoming lightlike geodesics, we will take θ , ϕ \theta, \phi θ , ϕ to be constant. The metric and geodesic equations simplify:
d s 2 = − ( 1 − 2 r ) d t 2 + ( 1 − 2 r ) − 1 d r 2 , d 2 t d λ 2 + 2 r ( r − 2 ) d t d λ d r d λ = 0 , d 2 r d λ 2 + r − 2 r 3 ( d t d λ ) 2 − 1 r ( r − 2 ) ( d r d λ ) 2 = 0. \begin{align*} ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2, \\ \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \\ \frac{d^2 r}{d\lambda^2} + \frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 - \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 &= 0. \\ \end{align*} d s 2 = − ( 1 − r 2 ) d t 2 + ( 1 − r 2 ) − 1 d r 2 , d λ 2 d 2 t + r ( r − 2 ) 2 d λ d t d λ d r d λ 2 d 2 r + r 3 r − 2 ( d λ d t ) 2 − r ( r − 2 ) 1 ( d λ d r ) 2 = 0 , = 0. I will not be using the geodesic equations. I will instead be using the metric which is equal to zero for lightlike intervals:
0 = − ( 1 − 2 r ) d t 2 + ( 1 − 2 r ) − 1 d r 2 , ( r − 2 r ) d t 2 = ( r − 2 r ) − 1 d r 2 , d t 2 = ( r r − 2 ) 2 d r 2 , d t = ± r r − 2 d r , ∫ 0 t d t = ± ∫ r 0 r r r − 2 d r , t = ± ∫ r 0 r r r − 2 d r = ± ∫ r 0 r r − 2 + 2 r − 2 d r = ± ∫ r 0 r ( 1 + 2 r − 2 ) d r = ± [ r + 2 ln ( r − 2 ) ] r 0 r , \begin{align*} 0 = -\left(1 - \frac{2}{r}\right) dt^2 &+ \left(1 - \frac{2}{r}\right)^{-1} dr^2, \\ \left(\frac{r - 2}{r}\right) dt^2 &= \left(\frac{r - 2}{r}\right)^{-1} dr^2, \\ dt^2 &= \left(\frac{r}{r - 2}\right)^2 dr^2, \\ dt &= \pm \frac{r}{r - 2} dr, \\ \int_0^t dt &= \pm \int_{r_0}^r \frac{r}{r - 2} dr, \\ t &= \pm \int_{r_0}^r \frac{r}{r - 2} dr \\ &= \pm \int_{r_0}^r \frac{r - 2 + 2}{r - 2} dr \\ &= \pm \int_{r_0}^r \left(1 + \frac{2}{r - 2}\right) dr \\ &= \pm \left[r + 2 \ln (r - 2)\right]_{r_0}^r, \\ \end{align*} 0 = − ( 1 − r 2 ) d t 2 ( r r − 2 ) d t 2 d t 2 d t ∫ 0 t d t t + ( 1 − r 2 ) − 1 d r 2 , = ( r r − 2 ) − 1 d r 2 , = ( r − 2 r ) 2 d r 2 , = ± r − 2 r d r , = ± ∫ r 0 r r − 2 r d r , = ± ∫ r 0 r r − 2 r d r = ± ∫ r 0 r r − 2 r − 2 + 2 d r = ± ∫ r 0 r ( 1 + r − 2 2 ) d r = ± [ r + 2 ln ( r − 2 ) ] r 0 r , this applies outside the event horizon. For the inside, the expression is equal to:
t = ± ∫ r 0 r r r − 2 d r = ± ∫ r 0 r − r 2 − r d r = ± ∫ r 0 r 2 − r − 2 2 − r d r = ± ∫ r 0 r ( 1 − 2 2 − r ) d r = ± ∫ r 0 r − ( − 1 + 2 2 − r ) d r , u = 2 − r , d u = − d r , t = ± ∫ 2 − r 0 2 − r ( − 1 + 2 u ) d u = ± [ − u + 2 ln u ] 2 − r 0 2 − r = ± [ − 2 + r + 2 ln ( 2 − r ) ] r 0 r constants cancel in definite integrals = ± [ r + 2 ln ( 2 − r ) ] r 0 r . \begin{align*} t &= \pm \int_{r_0}^r \frac{r}{r - 2} dr \\ &= \pm \int_{r_0}^r \frac{- r}{2 - r} dr \\ &= \pm \int_{r_0}^r \frac{2 - r - 2}{2 - r} dr \\ &= \pm \int_{r_0}^r \left(1 - \frac{2}{2 - r}\right) dr \\ &= \pm \int_{r_0}^r -\left(- 1 + \frac{2}{2 - r}\right) dr, \\ u &= 2 - r, \\ du &= -dr, \\ t &= \pm \int_{2 - r_0}^{2 - r} \left(- 1 + \frac{2}{u}\right) du \\ &= \pm \left[-u + 2 \ln u\right]_{2 - r_0}^{2 - r} \\ &= \pm \left[-2 + r + 2 \ln (2 -r)\right]_{r_0}^r \qquad \textrm{constants cancel in definite integrals} \\ &= \pm \left[r + 2 \ln (2 -r)\right]_{r_0}^r. \\ \end{align*} t u d u t = ± ∫ r 0 r r − 2 r d r = ± ∫ r 0 r 2 − r − r d r = ± ∫ r 0 r 2 − r 2 − r − 2 d r = ± ∫ r 0 r ( 1 − 2 − r 2 ) d r = ± ∫ r 0 r − ( − 1 + 2 − r 2 ) d r , = 2 − r , = − d r , = ± ∫ 2 − r 0 2 − r ( − 1 + u 2 ) d u = ± [ − u + 2 ln u ] 2 − r 0 2 − r = ± [ − 2 + r + 2 ln ( 2 − r ) ] r 0 r constants cancel in definite integrals = ± [ r + 2 ln ( 2 − r ) ] r 0 r . For incoming geodesics the sign is − - − . For outgoing geodesics, the sign is + + + . Below is a plot of the geodesics where green are incoming geodesics and red are outgoing:
When r > 2 r > 2 r > 2 :
g 00 = − ( 1 − 2 r ) < 0 , g 11 = ( 1 − 2 r ) − 1 > 0 , \begin{align*} g_{00} &= - \left(1 - \frac{2}{r}\right) < 0, \\ g_{11} &= \left(1 - \frac{2}{r}\right)^{-1} > 0, \end{align*} g 00 g 11 = − ( 1 − r 2 ) < 0 , = ( 1 − r 2 ) − 1 > 0 , meaning the t t t coordinate is timelike and the r r r coordinate is spacelike. When r → 2 r \to 2 r → 2 :
g 00 = − ( 1 − 2 r ) = 0 , g 11 = ( 1 − 2 r ) − 1 → ∞ , \begin{align*} g_{00} &= - \left(1 - \frac{2}{r}\right) = 0, \\ g_{11} &= \left(1 - \frac{2}{r}\right)^{-1} \to \infty, \end{align*} g 00 g 11 = − ( 1 − r 2 ) = 0 , = ( 1 − r 2 ) − 1 → ∞ , meaning the t t t coordinate is lightlike and the r r r coordinate is undefined (only in this coordinate system ). When r < 2 r < 2 r < 2 :
g 00 = − ( 1 − 2 r ) > 0 , g 11 = ( 1 − 2 r ) − 1 < 0 , \begin{align*} g_{00} &= - \left(1 - \frac{2}{r}\right) > 0, \\ g_{11} &= \left(1 - \frac{2}{r}\right)^{-1} < 0, \end{align*} g 00 g 11 = − ( 1 − r 2 ) > 0 , = ( 1 − r 2 ) − 1 < 0 , meaning the t t t coordinate is spacelike and the r r r coordinate is timelike. Below is the same plot with lightcones:
There are two constants of motion. The first can be derived from the t t t geodesic equation:
d 2 t d λ 2 + 2 r ( r − 2 ) d t d λ d r d λ = 0 , d t d λ = U 0 , d U 0 d λ + 2 r ( r − 2 ) d r d λ U 0 = 0 , 1 U 0 d U 0 + 2 r ( r − 2 ) d r = 0 , ∫ 1 U 0 d U 0 + ∫ 2 r ( r − 2 ) d r = C , ln U 0 + ∫ ( 1 r − 2 − 1 r ) d r = C , ln U 0 + ln ( r − 2 ) − ln ( r ) = C , ln ( U 0 r − 2 r ) = C , U 0 r − 2 r = e C , \begin{align*} \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \qquad \frac{dt}{d\lambda} = U^0, \\ \frac{dU^0}{d\lambda} + \frac{2}{r(r - 2)} \frac{dr}{d\lambda} U^0 &= 0, \\ \frac{1}{U^0} dU^0 + \frac{2}{r(r - 2)} dr &= 0, \\ \int \frac{1}{U^0} dU^0 + \int \frac{2}{r(r - 2)} dr &= C, \\ \ln U^0 + \int \left(\frac{1}{r - 2} - \frac{1}{r}\right) dr &= C, \\ \ln U^0 + \ln (r - 2) - \ln(r) &= C, \\ \ln \left(U^0 \frac{r - 2}{r}\right) &= C, \\ U^0 \frac{r - 2}{r} &= e^C, \end{align*} d λ 2 d 2 t + r ( r − 2 ) 2 d λ d t d λ d r d λ d U 0 + r ( r − 2 ) 2 d λ d r U 0 U 0 1 d U 0 + r ( r − 2 ) 2 d r ∫ U 0 1 d U 0 + ∫ r ( r − 2 ) 2 d r ln U 0 + ∫ ( r − 2 1 − r 1 ) d r ln U 0 + ln ( r − 2 ) − ln ( r ) ln ( U 0 r r − 2 ) U 0 r r − 2 = 0 , d λ d t = U 0 , = 0 , = 0 , = C , = C , = C , = C , = e C , the constant on the right side is the energy per unit mass E = E m \mathcal{E} = \frac{E}{m} E = m E :
E = d t d λ ( 1 − 2 r ) . \mathcal{E} = \frac{dt}{d\lambda} \left(1 - \frac{2}{r}\right). E = d λ d t ( 1 − r 2 ) . The other constant of motion can be derived from the ϕ \phi ϕ geodesic equation:
d 2 ϕ d λ 2 + 2 r d r d λ d ϕ d λ = 0 , d ϕ d λ = U 3 , d U 3 d λ + 2 r d r d λ U 3 = 0 , 1 U 3 d U 3 + 2 r d r = 0 , ∫ 1 U 3 d U 3 + ∫ 2 r d r = C , ln U 3 + 2 ln r = C , ln ( U 3 r 2 ) = C , U 3 r 2 = e C , \begin{align*} \frac{d^2 \phi}{d\lambda^2} + \frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda} &= 0, \qquad \frac{d\phi}{d\lambda} = U^3, \\ \frac{dU^3}{d\lambda} + \frac{2}{r} \frac{dr}{d\lambda} U^3 &= 0, \\ \frac{1}{U^3} dU^3 + \frac{2}{r} dr &= 0, \\ \int \frac{1}{U^3} dU^3 + \int \frac{2}{r} dr &= C, \\ \ln U^3 + 2\ln r &= C, \\ \ln (U^3 r^2) &= C, \\ U^3 r^2 &= e^C, \\ \end{align*} d λ 2 d 2 ϕ + r 2 d λ d r d λ d ϕ d λ d U 3 + r 2 d λ d r U 3 U 3 1 d U 3 + r 2 d r ∫ U 3 1 d U 3 + ∫ r 2 d r ln U 3 + 2 ln r ln ( U 3 r 2 ) U 3 r 2 = 0 , d λ d ϕ = U 3 , = 0 , = 0 , = C , = C , = C , = e C , the constant on the right side is the angular momentum per unit mass L = L m \mathcal{L} = \frac{L}{m} L = m L :
L = d ϕ d λ r 2 . \mathcal{L} = \frac{d\phi}{d\lambda} r^2. L = d λ d ϕ r 2 . Taking the limit as r → ∞ r \to \infty r → ∞ for E \mathcal{E} E , we recover time component of 4-momentum in flat space (taking λ = τ \lambda = \tau λ = τ ):
lim r → ∞ E m = lim r → ∞ d t d τ ( 1 − 2 r ) = d t d τ = γ , E → γ m . \begin{align*} \lim_{r \to \infty} \frac{E}{m} &= \lim_{r \to \infty} \frac{dt}{d\tau} \left(1 - \frac{2}{r}\right) \\ &= \frac{dt}{d\tau} \\ &= \gamma, \\ E &\to \gamma m. \end{align*} r → ∞ lim m E E = r → ∞ lim d τ d t ( 1 − r 2 ) = d τ d t = γ , → γm . Consider an orbit where θ = π 2 \theta = \frac{\pi}{2} θ = 2 π :
where v r = d r d t v_r = \frac{dr}{dt} v r = d t d r and v p e r p = r d ϕ d t v_{perp} = r \frac{d\phi}{dt} v p er p = r d t d ϕ . The total energy is equal to:
E = 1 2 m v 2 − G M m r = 1 2 m [ ( d r d t ) 2 + r 2 ( d ϕ d t ) 2 ] − G M m r = 1 2 m ( d r d t ) 2 + 1 2 m r 2 ( d ϕ d t ) 2 − G M m r = 1 2 m ( d r d t ) 2 + 1 2 m r 2 m 2 r 4 ( d ϕ d t ) 2 − G M m r = 1 2 m ( d r d t ) 2 + L 2 2 m r 2 − G M m r = 1 2 m ( d r d t ) 2 + U e f f ( r ) , \begin{align*} E &= \frac{1}{2} m v^2 - G \frac{Mm}{r} \\ &= \frac{1}{2} m \left[\left(\frac{dr}{dt}\right)^2 + r^2 \left(\frac{d\phi}{dt}\right)^2\right] - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \frac{1}{2} m r^2 \left(\frac{d\phi}{dt}\right)^2 - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \frac{1}{2 m r^2} m^2 r^4 \left(\frac{d\phi}{dt}\right)^2 - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \frac{L^2}{2 m r^2} - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + U_{eff}(r), \end{align*} E = 2 1 m v 2 − G r M m = 2 1 m [ ( d t d r ) 2 + r 2 ( d t d ϕ ) 2 ] − G r M m = 2 1 m ( d t d r ) 2 + 2 1 m r 2 ( d t d ϕ ) 2 − G r M m = 2 1 m ( d t d r ) 2 + 2 m r 2 1 m 2 r 4 ( d t d ϕ ) 2 − G r M m = 2 1 m ( d t d r ) 2 + 2 m r 2 L 2 − G r M m = 2 1 m ( d t d r ) 2 + U e ff ( r ) , where U e f f ( r ) = L 2 2 m r 2 − G M m r = L 2 2 m r 2 − m r U_{eff}(r) = \frac{L^2}{2 m r^2} - G\frac{Mm}{r} = \frac{L^2}{2 m r^2} - \frac{m}{r} U e ff ( r ) = 2 m r 2 L 2 − G r M m = 2 m r 2 L 2 − r m (using geometrized units) is the effective potential energy and L = m r 2 d ϕ d t L = m r^2 \frac{d\phi}{dt} L = m r 2 d t d ϕ is the angular momentum. Below is a plot for the potential energy where G = M = m = 1 G = M = m = 1 G = M = m = 1 . Green curve is for L = 0 L = 0 L = 0 , blue is for L = 0.5 L = 0.5 L = 0.5 , red is for L = 0.75 L = 0.75 L = 0.75 and orange is for L = 1 L = 1 L = 1 .
Plotting the case where L = 0.5 L = 0.5 L = 0.5 , we can see two different energy levels:
The body will always have the potential energy less than or equal the total energy (as shown by the pink line for E 2 E_2 E 2 ). E 1 E_1 E 1 is circular orbit where kinetic energy is always zero and so the radial velocity d r d t \frac{dr}{dt} d t d r . E 2 E_2 E 2 is elliptical orbit and is oscillating between two values for r r r . E 3 E_3 E 3 flies away towards infinity.
The energy and angular momentum stay constant. They are given by initial distance r 0 r_0 r 0 , initial radial velocity v 0 v_0 v 0 and initial angular velocity ω 0 \omega_0 ω 0 :
L = m r 0 2 ω 0 , E = 1 2 m v 0 2 + U e f f ( r 0 ) . \begin{align*} L &= m r_0^2 \omega_0, \\ E &= \frac{1}{2} m v_0^2 + U_{eff}(r_0). \end{align*} L E = m r 0 2 ω 0 , = 2 1 m v 0 2 + U e ff ( r 0 ) . Every orbit has two points where d r d t = 0 \frac{dr}{dt} = 0 d t d r = 0 (or everywhere for circular orbit). We can solve for these:
E = L 2 2 m r 2 − m r , 0 = L 2 2 m r 2 − m r − E , 0 = − E r 2 − m r + L 2 2 m , D = ( − m ) 2 − 4 ( − E ) L 2 2 m = m 2 + 2 E L 2 m , r = − ( − m ) ± D 2 ( − E ) = − m ± D 2 E . \begin{align*} E &= \frac{L^2}{2 m r^2} - \frac{m}{r}, \\ 0 &= \frac{L^2}{2 m r^2} - \frac{m}{r} - E, \\ 0 &= -E r^2 - mr + \frac{L^2}{2 m}, \\ D &= (-m)^2 - 4(-E)\frac{L^2}{2 m} \\ &= m^2 + 2\frac{E L^2}{m}, \\ r &= \frac{-(-m) \pm \sqrt{D}}{2(-E)} \\ &= -\frac{m \pm \sqrt{D}}{2E}. \end{align*} E 0 0 D r = 2 m r 2 L 2 − r m , = 2 m r 2 L 2 − r m − E , = − E r 2 − m r + 2 m L 2 , = ( − m ) 2 − 4 ( − E ) 2 m L 2 = m 2 + 2 m E L 2 , = 2 ( − E ) − ( − m ) ± D = − 2 E m ± D . If the radial velocity d r d t \frac{dr}{dt} d t d r is zero everywhere, we have circular orbit. The energy is equal to the effective potential energy:
E = L 2 2 m r 2 − m r , E = \frac{L^2}{2 m r^2} - \frac{m}{r}, E = 2 m r 2 L 2 − r m , this has to stay constant, taking the derivative:
d d t ( L 2 2 m r 2 − m r ) = − L 2 m r 3 + m r 2 = 0 , \frac{d}{dt} \left(\frac{L^2}{2 m r^2} - \frac{m}{r}\right) = - \frac{L^2}{m r^3} + \frac{m}{r^2} = 0, d t d ( 2 m r 2 L 2 − r m ) = − m r 3 L 2 + r 2 m = 0 , and solving for r r r :
− L 2 m r 3 + m r 2 = 0 , r m 2 − L 2 = 0 , r = L 2 m 2 , \begin{align*} - \frac{L^2}{m r^3} + \frac{m}{r^2} &= 0, \\ r m^2 - L^2 &= 0, r &= \frac{L^2}{m^2}, \end{align*} − m r 3 L 2 + r 2 m r m 2 − L 2 = 0 , = 0 , r = m 2 L 2 , or if given radius, we can solve for angular velocity:
r = m 2 r 4 m 2 ( d ϕ d t ) 2 , ( d ϕ d t ) 2 = 1 r 3 , d ϕ d t = ± 1 r r , v p e r p = ± 1 r . \begin{align*} r &= \frac{m^2 r^4}{m^2} \left(\frac{d\phi}{dt}\right)^2, \\ \left(\frac{d\phi}{dt}\right)^2 &= \frac{1}{r^3}, \\ \frac{d\phi}{dt} &= \pm \frac{1}{r\sqrt{r}}, \\ v_{perp} &= \pm \frac{1}{\sqrt{r}}. \end{align*} r ( d t d ϕ ) 2 d t d ϕ v p er p = m 2 m 2 r 4 ( d t d ϕ ) 2 , = r 3 1 , = ± r r 1 , = ± r 1 . Consider a path parametrized by λ \lambda λ , the length of the tangent vector is equal to:
ϵ = − ( 1 − 2 r ) ( d t d λ ) 2 + ( 1 − 2 r ) − 1 ( d r d λ ) 2 + r 2 ( d ϕ d λ ) 2 , \epsilon = -\left(1 - \frac{2}{r}\right) \left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2, ϵ = − ( 1 − r 2 ) ( d λ d t ) 2 + ( 1 − r 2 ) − 1 ( d λ d r ) 2 + r 2 ( d λ d ϕ ) 2 , where ϵ \epsilon ϵ is:
ϵ < 0 , for timelike geodesics , ϵ = − 1 , for timelike geodesics where λ = τ , ϵ = 0 , for lightlike geodesics , ϵ > 0 , for spacelike geodesics , \begin{align*} \epsilon &< 0, & &\textrm{for timelike geodesics}, \\ \epsilon &= -1, & &\textrm{for timelike geodesics where \(\lambda = \tau\)}, \\ \epsilon &= 0, & &\textrm{for lightlike geodesics}, \\ \epsilon &> 0, & &\textrm{for spacelike geodesics}, \\ \end{align*} ϵ ϵ ϵ ϵ < 0 , = − 1 , = 0 , > 0 , for timelike geodesics , for timelike geodesics where λ = τ , for lightlike geodesics , for spacelike geodesics , but I will not be considering space-like geodesics.
Substiting the constants of motion into the equation for ϵ \epsilon ϵ :
ϵ = − ( 1 − 2 r ) ( E 1 − 2 r ) 2 + ( 1 − 2 r ) − 1 ( d r d λ ) 2 + r 2 ( L r 2 ) 2 , ϵ = − r r − 2 E 2 + r r − 2 ( d r d λ ) 2 + L 2 r 2 , 0 = − r r − 2 E 2 + r r − 2 ( d r d λ ) 2 + L 2 r 2 − ϵ , 0 = − E 2 + ( d r d λ ) 2 + r − 2 r L 2 r 2 − r − 2 r ϵ , 0 = − E 2 + ( d r d λ ) 2 + ( 1 − 2 r ) ( L 2 r 2 − ϵ ) , E 2 = ( d r d λ ) 2 + ( 1 − 2 r ) ( L 2 r 2 − ϵ ) , = ( d r d λ ) 2 + ( L 2 r 2 − 2 L 2 r 3 + 2 r ϵ − ϵ ) , = ( d r d λ ) 2 + L 2 r 2 − 2 L 2 r 3 + 2 r ϵ − ϵ , \begin{align*} \epsilon &= -\left(1 - \frac{2}{r}\right) \left(\frac{\mathcal{E}}{1 - \frac{2}{r}}\right)^2 + \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{\mathcal{L}}{r^2}\right)^2, \\ \epsilon &= -\frac{r}{r - 2} \mathcal{E}^2 + \frac{r}{r - 2} \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2}, \\ 0 &= -\frac{r}{r - 2} \mathcal{E}^2 + \frac{r}{r - 2} \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \epsilon, \\ 0 &= - \mathcal{E}^2 + \left(\frac{dr}{d\lambda}\right)^2 + \frac{r - 2}{r} \frac{\mathcal{L}^2}{r^2} - \frac{r - 2}{r} \epsilon, \\ 0 &= - \mathcal{E}^2 + \left(\frac{dr}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right) \left(\frac{\mathcal{L}^2}{r^2} - \epsilon\right), \\ \mathcal{E}^2 &= \left(\frac{dr}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right) \left(\frac{\mathcal{L}^2}{r^2} - \epsilon\right), \\ &= \left(\frac{dr}{d\lambda}\right)^2 + \left(\frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} + \frac{2}{r} \epsilon - \epsilon\right), \\ &= \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} + \frac{2}{r} \epsilon - \epsilon, \end{align*} ϵ ϵ 0 0 0 E 2 = − ( 1 − r 2 ) ( 1 − r 2 E ) 2 + ( 1 − r 2 ) − 1 ( d λ d r ) 2 + r 2 ( r 2 L ) 2 , = − r − 2 r E 2 + r − 2 r ( d λ d r ) 2 + r 2 L 2 , = − r − 2 r E 2 + r − 2 r ( d λ d r ) 2 + r 2 L 2 − ϵ , = − E 2 + ( d λ d r ) 2 + r r − 2 r 2 L 2 − r r − 2 ϵ , = − E 2 + ( d λ d r ) 2 + ( 1 − r 2 ) ( r 2 L 2 − ϵ ) , = ( d λ d r ) 2 + ( 1 − r 2 ) ( r 2 L 2 − ϵ ) , = ( d λ d r ) 2 + ( r 2 L 2 − r 3 2 L 2 + r 2 ϵ − ϵ ) , = ( d λ d r ) 2 + r 2 L 2 − r 3 2 L 2 + r 2 ϵ − ϵ , For timelike geodesics, λ = τ \lambda = \tau λ = τ and ϵ = − 1 \epsilon = -1 ϵ = − 1 :
E 2 = ( d r d τ ) 2 + L 2 r 2 − 2 L 2 r 3 − 2 r + 1 , ( E m ) 2 = ( d r d τ ) 2 + L 2 m 2 r 2 − 2 L 2 m 2 r 3 − 2 r + 1 , 1 2 m ( E m ) 2 = 1 2 m ( d r d τ ) 2 + L 2 2 m r 2 − L 2 m r 3 − m r + m 2 , 1 2 ( E 2 m − m ) = 1 2 m ( d r d τ ) 2 + L 2 2 m r 2 − L 2 m r 3 − m r = 1 2 m ( d r d τ ) 2 + ( L 2 2 m r 2 − m r − L 2 m r 3 ) , E = 1 2 m ( d r d τ ) 2 + ( m L 2 2 r 2 − m r − m L 2 r 3 ) , = 1 2 m ( d r d τ ) 2 + U e f f ( r ) , \begin{align*} \mathcal{E}^2 &= \left(\frac{dr}{d\tau}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} - \frac{2}{r} + 1, \\ \left(\frac{E}{m}\right)^2 &= \left(\frac{dr}{d\tau}\right)^2 + \frac{L^2}{m^2 r^2} - \frac{2 L^2}{m^2 r^3} - \frac{2}{r} + 1, \\ \frac{1}{2} m \left(\frac{E}{m}\right)^2 &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \frac{L^2}{2 m r^2} - \frac{L^2}{m r^3} - \frac{m}{r} + \frac{m}{2}, \\ \frac{1}{2} \left(\frac{E^2}{m} - m\right) &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \frac{L^2}{2 m r^2} - \frac{L^2}{m r^3} - \frac{m}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \left(\frac{L^2}{2 m r^2} - \frac{m}{r} - \frac{L^2}{m r^3}\right), \\ \mathscr{E} &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \left(\frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}\right), \\ &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + U_{eff}(r), \end{align*} E 2 ( m E ) 2 2 1 m ( m E ) 2 2 1 ( m E 2 − m ) E = ( d τ d r ) 2 + r 2 L 2 − r 3 2 L 2 − r 2 + 1 , = ( d τ d r ) 2 + m 2 r 2 L 2 − m 2 r 3 2 L 2 − r 2 + 1 , = 2 1 m ( d τ d r ) 2 + 2 m r 2 L 2 − m r 3 L 2 − r m + 2 m , = 2 1 m ( d τ d r ) 2 + 2 m r 2 L 2 − m r 3 L 2 − r m = 2 1 m ( d τ d r ) 2 + ( 2 m r 2 L 2 − r m − m r 3 L 2 ) , = 2 1 m ( d τ d r ) 2 + ( 2 r 2 m L 2 − r m − r 3 m L 2 ) , = 2 1 m ( d τ d r ) 2 + U e ff ( r ) , where E = 1 2 ( E 2 m + m ) = 1 2 ( m E 2 + m ) \mathscr{E} = \frac{1}{2} \left(\frac{E^2}{m} + m\right) = \frac{1}{2} \left(m \mathcal{E}^2 + m\right) E = 2 1 ( m E 2 + m ) = 2 1 ( m E 2 + m ) , E = E m \mathcal{E} = \frac{E}{m} E = m E , L = L m = r 2 d ϕ d τ \mathcal{L} = \frac{L}{m} = r^2 \frac{d\phi}{d\tau} L = m L = r 2 d τ d ϕ and U e f f ( r ) = m L 2 2 r 2 − m r − m L 2 r 3 U_{eff}(r) = \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3} U e ff ( r ) = 2 r 2 m L 2 − r m − r 3 m L 2 .
Comparing with the newtonian potential equation, we can see the difference on the left side and the difference between potentials on the right side:
E = 1 2 m ( d r d τ ) 2 + ( L 2 2 m r 2 − m r − L 2 m r 3 ) , E = 1 2 m ( d r d t ) 2 + ( L 2 2 m r 2 − m r ) , \begin{align*} \mathscr{E} &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \left(\frac{L^2}{2 m r^2} - \frac{m}{r} - \frac{L^2}{m r^3}\right), \\ E &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \left(\frac{L^2}{2 m r^2} - \frac{m}{r}\right), \\ \end{align*} E E = 2 1 m ( d τ d r ) 2 + ( 2 m r 2 L 2 − r m − m r 3 L 2 ) , = 2 1 m ( d t d r ) 2 + ( 2 m r 2 L 2 − r m ) , we see that the right sides are almost identical apart from the extra term in the potential. The last extra term vanishes at further distances.
Below is a plot of the effective potential energy where m = 1 m = 1 m = 1 using geometrized units. Red curve is for L = 2 \mathcal{L} = 2 L = 2 , orange for L = 10 \mathcal{L} = 10 L = 10 , green for L = 15 \mathcal{L} = 15 L = 15 and blue for L = 20 \mathcal{L} = 20 L = 20 :
I will use the green line where L = 15 \mathcal{L} = 15 L = 15 . We can start with two energies:
for E 1 E_1 E 1 , there are two distances - r 1 r_1 r 1 and r 2 r_2 r 2 . If the distance is r 1 r_1 r 1 , the body falls into the other body. If the distance is r 2 r_2 r 2 , the body flies away towards infinity. E 2 E_2 E 2 is unstable circular orbit. If we change the total energy by even a small amount, then the body either falls into the other body or flies away towards infinity.
There are also two other energy levels that cannot be seen on the image above:
E 3 E_3 E 3 shows the energy level of stable circular orbit and E 4 E_4 E 4 shows the energy level of elliptical orbit.
Similarly, the constants of motion can be given by the initial distance r 0 r_0 r 0 , intial radial velocity v 0 v_0 v 0 and the initial angular velocity ω 0 \omega_0 ω 0 .:
L = r 0 2 ω 0 , E = 1 2 m v 0 2 + U e f f ( r 0 ) , \begin{align*} \mathcal{L} &= r_0^2 \omega_0, \\ \mathscr{E} &= \frac{1}{2} m v_0^2 + U_{eff}(r_0), \end{align*} L E = r 0 2 ω 0 , = 2 1 m v 0 2 + U e ff ( r 0 ) , where U e f f ( r ) = m L 2 2 r 2 − m r − m L 2 r 3 U_{eff}(r) = \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3} U e ff ( r ) = 2 r 2 m L 2 − r m − r 3 m L 2 . Setting d r d τ = 0 \frac{dr}{d\tau} = 0 d τ d r = 0 , we can solve for extramal distances:
E = m L 2 2 r 2 − m r − m L 2 r 3 , 0 = − E − m r + m L 2 2 r 2 − m L 2 r 3 , 0 = − r 3 E − r 2 m + r m L 2 2 − m L 2 , \begin{align*} \mathscr{E} &= \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}, \\ 0 &= - \mathscr{E} - \frac{m}{r} + \frac{m \mathcal{L}^2}{2 r^2} - \frac{m \mathcal{L}^2}{r^3}, \\ 0 &= - r^3 \mathscr{E} - r^2 m + r \frac{m \mathcal{L}^2}{2} - m \mathcal{L}^2, \\ \end{align*} E 0 0 = 2 r 2 m L 2 − r m − r 3 m L 2 , = − E − r m + 2 r 2 m L 2 − r 3 m L 2 , = − r 3 E − r 2 m + r 2 m L 2 − m L 2 , this can be solved by the cubic equation.
For circular orbits d r d τ = 0 \frac{dr}{d\tau} = 0 d τ d r = 0 and the energy is equal to the effective potential energy. We can solve for the radius by taking the derivative (since the potential stays constant):
E = m L 2 2 r 2 − m r − m L 2 r 3 , 0 = d d r ( − m L 2 r 3 + m L 2 2 r 2 − m r ) = 3 m L 2 r 4 − m L 2 r 3 + m r 2 , 0 = r 2 m − r m L 2 + 3 m L 2 , D = ( − m L 2 ) 2 − 4 ( m ) ( 3 m L 2 ) = m 2 L 4 − 12 m 2 L 2 , r = − ( − m L 2 ) ± m 2 L 4 − 12 m 2 L 2 2 m = m L 2 ± m L 4 − 12 L 2 2 m = L 2 ± L 4 − 12 L 2 2 , \begin{align*} \mathscr{E} &= \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}, \\ 0 &= \frac{d}{dr}\left(- \frac{m \mathcal{L}^2}{r^3} + \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r}\right) \\ &= 3 \frac{m \mathcal{L}^2}{r^4} - \frac{m \mathcal{L}^2}{r^3} + \frac{m}{r^2}, \\ 0 &= r^2 m - r m \mathcal{L}^2 + 3 m \mathcal{L}^2, \\ D &= \left(-m \mathcal{L}^2\right)^2 - 4 (m) (3 m \mathcal{L}^2) \\ &= m^2 \mathcal{L}^4 - 12 m^2 \mathcal{L}^2, \\ r &= \frac{-(-m \mathcal{L}^2) \pm \sqrt{m^2 \mathcal{L}^4 - 12 m^2 \mathcal{L}^2}}{2m} \\ &= \frac{m \mathcal{L}^2 \pm m\sqrt{\mathcal{L}^4 - 12 \mathcal{L}^2}}{2m} \\ &= \frac{\mathcal{L}^2 \pm \sqrt{\mathcal{L}^4 - 12 \mathcal{L}^2}}{2}, \end{align*} E 0 0 D r = 2 r 2 m L 2 − r m − r 3 m L 2 , = d r d ( − r 3 m L 2 + 2 r 2 m L 2 − r m ) = 3 r 4 m L 2 − r 3 m L 2 + r 2 m , = r 2 m − r m L 2 + 3 m L 2 , = ( − m L 2 ) 2 − 4 ( m ) ( 3 m L 2 ) = m 2 L 4 − 12 m 2 L 2 , = 2 m − ( − m L 2 ) ± m 2 L 4 − 12 m 2 L 2 = 2 m m L 2 ± m L 4 − 12 L 2 = 2 L 2 ± L 4 − 12 L 2 , where − - − is the unstable orbit and + + + is the stable orbit.
The stable and unstable orbits can converge when discriminant is zero:
D = m 2 L 4 − 12 m 2 L 2 = 0 , m 2 L 4 = 12 m 2 L 2 , L 2 = 12 , \begin{align*} D &= m^2 \mathcal{L}^4 - 12 m^2 \mathcal{L}^2 = 0, \\ m^2 \mathcal{L}^4 &= 12 m^2 \mathcal{L}^2, \\ \mathcal{L}^2 &= 12, \end{align*} D m 2 L 4 L 2 = m 2 L 4 − 12 m 2 L 2 = 0 , = 12 m 2 L 2 , = 12 , substituting into the equation for r r r :
r = L 2 ± L 4 − 12 L 2 2 = L 2 2 = 12 2 = 6 = 3 r s , \begin{align*} r &= \frac{\mathcal{L}^2 \pm \sqrt{\mathcal{L}^4 - 12 \mathcal{L}^2}}{2} \\ &= \frac{\mathcal{L}^2}{2} \\ &= \frac{12}{2} \\ &= 6 \\ &= 3 r_s, \end{align*} r = 2 L 2 ± L 4 − 12 L 2 = 2 L 2 = 2 12 = 6 = 3 r s , this is the inner most stable circular orbit.
To predict the nature of orbit, we can use the derivative of the effective potential:
U e f f ′ ( r ) = 3 m L 2 r 4 − m L 2 r 3 + m r 2 U'_{eff}(r) = 3\frac{m \mathcal{L}^2}{r^4} - \frac{m \mathcal{L}^2}{r^3} + \frac{m}{r^2} U e ff ′ ( r ) = 3 r 4 m L 2 − r 3 m L 2 + r 2 m M ( k g ) M\ (kg) M ( k g ) :m ( k g ) m\ (kg) m ( k g ) :r 0 ( m ) r_0\ (m) r 0 ( m ) :v 0 ( m s − 1 ) v_0\ (m\ s^{-1}) v 0 ( m s − 1 ) :v p e r p 0 ( m s − 1 ) v_{perp0}\ (m\ s^{-1}) v p er p 0 ( m s − 1 ) :L = 4.45 ⋅ 1 0 15 k g m 2 s − 1 , E = − 2.6 ⋅ 1 0 33 J , r 1 = 2.92 ⋅ 1 0 3 m , r 2 = 7.54 ⋅ 1 0 10 m , r 3 = N a N ⋅ 1 0 N a N m .
\begin{align*}
L &= 4.45 \cdot 10^{15}\ kg\ m^2\ s^{-1}, \\
E &= -2.6 \cdot 10^{33}\ J, \\
r_1 &= 2.92 \cdot 10^{3}\ m, \\
r_2 &= 7.54 \cdot 10^{10}\ m, \\
r_3 &= NaN \cdot 10^{NaN}\ m.
\end{align*}
L E r 1 r 2 r 3 = 4.45 ⋅ 1 0 15 k g m 2 s − 1 , = − 2.6 ⋅ 1 0 33 J , = 2.92 ⋅ 1 0 3 m , = 7.54 ⋅ 1 0 10 m , = N a N ⋅ 1 0 N a N m . Ellipse Data
Semi-major axis: 3.77 ⋅ 1 0 10 m 3.77 \cdot 10^{10} m 3.77 ⋅ 1 0 10 m
Distance of star from center: 3.77 ⋅ 1 0 10 m 3.77 \cdot 10^{10} m 3.77 ⋅ 1 0 10 m
For lightlike geodesics, ϵ = 0 \epsilon = 0 ϵ = 0 :
E 2 = ( d r d λ ) 2 + L 2 r 2 − 2 L 2 r 3 + 2 r ϵ − ϵ = ( d r d λ ) 2 + L 2 r 2 − 2 L 2 r 3 . \begin{align*} \mathcal{E}^2 &= \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} + \frac{2}{r} \epsilon - \epsilon \\ &= \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3}. \end{align*} E 2 = ( d λ d r ) 2 + r 2 L 2 − r 3 2 L 2 + r 2 ϵ − ϵ = ( d λ d r ) 2 + r 2 L 2 − r 3 2 L 2 . Consider circular orbits (d r d λ \frac{dr}{d\lambda} d λ d r ):
E 2 = L 2 r 2 − 2 L 2 r 3 , \mathcal{E}^2 = \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3}, E 2 = r 2 L 2 − r 3 2 L 2 , taking the derivative:
d d r ( L 2 r 2 − 2 L 2 r 3 ) = − 2 L 2 r 3 + 3 2 L 2 r 4 = 0 , \frac{d}{dr} \left(\frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3}\right) = -2\frac{\mathcal{L}^2}{r^3} + 3 \frac{2\mathcal{L}^2}{r^4} = 0, d r d ( r 2 L 2 − r 3 2 L 2 ) = − 2 r 3 L 2 + 3 r 4 2 L 2 = 0 , and solving for r r r :
− 2 L 2 r 3 + 3 2 L 2 r 4 = 0 , 2 L 2 r 3 − 3 2 L 2 r 4 = 0 , 2 r L 2 − 6 L 2 = 0 , r − 3 = 0 , r = 3 = 3 2 r s , \begin{align*} -2\frac{\mathcal{L}^2}{r^3} + 3 \frac{2\mathcal{L}^2}{r^4} &= 0, \\ 2\frac{\mathcal{L}^2}{r^3} - 3 \frac{2\mathcal{L}^2}{r^4} &= 0, \\ 2r \mathcal{L}^2 - 6\mathcal{L}^2 &= 0, \\ r - 3 &= 0, \\ r &= 3 \\ &= \frac{3}{2} r_s, \\ \end{align*} − 2 r 3 L 2 + 3 r 4 2 L 2 2 r 3 L 2 − 3 r 4 2 L 2 2 r L 2 − 6 L 2 r − 3 r = 0 , = 0 , = 0 , = 0 , = 3 = 2 3 r s , this is the radius of the photon sphere. Light rays at this distance orbit the body in circles.