Back

Geodesics

The metric and geodesic equations are in the form:

ds2=(12r)dt2+(12r)1dr2+r2dϕ2,d2tdλ2+2r(r2)dtdλdrdλ=0,d2rdλ2+r2r3(dtdλ)21r(r2)(drdλ)2(r2)(dϕdλ)2=0,d2ϕdλ2+2rdrdλdϕdλ=0. \begin{align*} ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2, \\ \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \\ \frac{d^2 r}{d\lambda^2} + \frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 - \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 - (r - 2) \left(\frac{d\phi}{d\lambda}\right)^2 &= 0, \\ \frac{d^2 \phi}{d\lambda^2} + \frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda} &= 0. \end{align*}

For incoming lightlike geodesics, we will take θ,ϕ\theta, \phi to be constant. The metric and geodesic equations simplify:

ds2=(12r)dt2+(12r)1dr2,d2tdλ2+2r(r2)dtdλdrdλ=0,d2rdλ2+r2r3(dtdλ)21r(r2)(drdλ)2=0. \begin{align*} ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2, \\ \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \\ \frac{d^2 r}{d\lambda^2} + \frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 - \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 &= 0. \\ \end{align*}

I will not be using the geodesic equations. I will instead be using the metric which is equal to zero for lightlike intervals:

0=(12r)dt2+(12r)1dr2,(r2r)dt2=(r2r)1dr2,dt2=(rr2)2dr2,dt=±rr2dr,0tdt=±r0rrr2dr,t=±r0rrr2dr=±r0rr2+2r2dr=±r0r(1+2r2)dr=±[r+2ln(r2)]r0r, \begin{align*} 0 = -\left(1 - \frac{2}{r}\right) dt^2 &+ \left(1 - \frac{2}{r}\right)^{-1} dr^2, \\ \left(\frac{r - 2}{r}\right) dt^2 &= \left(\frac{r - 2}{r}\right)^{-1} dr^2, \\ dt^2 &= \left(\frac{r}{r - 2}\right)^2 dr^2, \\ dt &= \pm \frac{r}{r - 2} dr, \\ \int_0^t dt &= \pm \int_{r_0}^r \frac{r}{r - 2} dr, \\ t &= \pm \int_{r_0}^r \frac{r}{r - 2} dr \\ &= \pm \int_{r_0}^r \frac{r - 2 + 2}{r - 2} dr \\ &= \pm \int_{r_0}^r \left(1 + \frac{2}{r - 2}\right) dr \\ &= \pm \left[r + 2 \ln (r - 2)\right]_{r_0}^r, \\ \end{align*}

this applies outside the event horizon. For the inside, the expression is equal to:

t=±r0rrr2dr=±r0rr2rdr=±r0r2r22rdr=±r0r(122r)dr=±r0r(1+22r)dr,u=2r,du=dr,t=±2r02r(1+2u)du=±[u+2lnu]2r02r=±[2+r+2ln(2r)]r0rconstants cancel in definite integrals=±[r+2ln(2r)]r0r. \begin{align*} t &= \pm \int_{r_0}^r \frac{r}{r - 2} dr \\ &= \pm \int_{r_0}^r \frac{- r}{2 - r} dr \\ &= \pm \int_{r_0}^r \frac{2 - r - 2}{2 - r} dr \\ &= \pm \int_{r_0}^r \left(1 - \frac{2}{2 - r}\right) dr \\ &= \pm \int_{r_0}^r -\left(- 1 + \frac{2}{2 - r}\right) dr, \\ u &= 2 - r, \\ du &= -dr, \\ t &= \pm \int_{2 - r_0}^{2 - r} \left(- 1 + \frac{2}{u}\right) du \\ &= \pm \left[-u + 2 \ln u\right]_{2 - r_0}^{2 - r} \\ &= \pm \left[-2 + r + 2 \ln (2 -r)\right]_{r_0}^r \qquad \textrm{constants cancel in definite integrals} \\ &= \pm \left[r + 2 \ln (2 -r)\right]_{r_0}^r. \\ \end{align*}

For incoming geodesics the sign is -. For outgoing geodesics, the sign is ++. Below is a plot of the geodesics where green are incoming geodesics and red are outgoing:

Lightlike geodesics

When r>2r > 2:

g00=(12r)<0,g11=(12r)1>0, \begin{align*} g_{00} &= - \left(1 - \frac{2}{r}\right) < 0, \\ g_{11} &= \left(1 - \frac{2}{r}\right)^{-1} > 0, \end{align*}

meaning the tt coordinate is timelike and the rr coordinate is spacelike. When r2r \to 2:

g00=(12r)=0,g11=(12r)1, \begin{align*} g_{00} &= - \left(1 - \frac{2}{r}\right) = 0, \\ g_{11} &= \left(1 - \frac{2}{r}\right)^{-1} \to \infty, \end{align*}

meaning the tt coordinate is lightlike and the rr coordinate is undefined (only in this coordinate system). When r<2r < 2:

g00=(12r)>0,g11=(12r)1<0, \begin{align*} g_{00} &= - \left(1 - \frac{2}{r}\right) > 0, \\ g_{11} &= \left(1 - \frac{2}{r}\right)^{-1} < 0, \end{align*}

meaning the tt coordinate is spacelike and the rr coordinate is timelike. Below is the same plot with lightcones:

Lightlike geodesics with light cones

There are two constants of motion. The first can be derived from the tt geodesic equation:

d2tdλ2+2r(r2)dtdλdrdλ=0,dtdλ=U0,dU0dλ+2r(r2)drdλU0=0,1U0dU0+2r(r2)dr=0,1U0dU0+2r(r2)dr=C,lnU0+(1r21r)dr=C,lnU0+ln(r2)ln(r)=C,ln(U0r2r)=C,U0r2r=eC, \begin{align*} \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \qquad \frac{dt}{d\lambda} = U^0, \\ \frac{dU^0}{d\lambda} + \frac{2}{r(r - 2)} \frac{dr}{d\lambda} U^0 &= 0, \\ \frac{1}{U^0} dU^0 + \frac{2}{r(r - 2)} dr &= 0, \\ \int \frac{1}{U^0} dU^0 + \int \frac{2}{r(r - 2)} dr &= C, \\ \ln U^0 + \int \left(\frac{1}{r - 2} - \frac{1}{r}\right) dr &= C, \\ \ln U^0 + \ln (r - 2) - \ln(r) &= C, \\ \ln \left(U^0 \frac{r - 2}{r}\right) &= C, \\ U^0 \frac{r - 2}{r} &= e^C, \end{align*}

the constant on the right side is the energy per unit mass E=Em\mathcal{E} = \frac{E}{m}:

E=dtdλ(12r).\mathcal{E} = \frac{dt}{d\lambda} \left(1 - \frac{2}{r}\right).

The other constant of motion can be derived from the ϕ\phi geodesic equation:

d2ϕdλ2+2rdrdλdϕdλ=0,dϕdλ=U3,dU3dλ+2rdrdλU3=0,1U3dU3+2rdr=0,1U3dU3+2rdr=C,lnU3+2lnr=C,ln(U3r2)=C,U3r2=eC, \begin{align*} \frac{d^2 \phi}{d\lambda^2} + \frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda} &= 0, \qquad \frac{d\phi}{d\lambda} = U^3, \\ \frac{dU^3}{d\lambda} + \frac{2}{r} \frac{dr}{d\lambda} U^3 &= 0, \\ \frac{1}{U^3} dU^3 + \frac{2}{r} dr &= 0, \\ \int \frac{1}{U^3} dU^3 + \int \frac{2}{r} dr &= C, \\ \ln U^3 + 2\ln r &= C, \\ \ln (U^3 r^2) &= C, \\ U^3 r^2 &= e^C, \\ \end{align*}

the constant on the right side is the angular momentum per unit mass L=Lm\mathcal{L} = \frac{L}{m}:

L=dϕdλr2.\mathcal{L} = \frac{d\phi}{d\lambda} r^2.

Taking the limit as rr \to \infty for E\mathcal{E}, we recover time component of 4-momentum in flat space (taking λ=τ\lambda = \tau):

limrEm=limrdtdτ(12r)=dtdτ=γ,Eγm. \begin{align*} \lim_{r \to \infty} \frac{E}{m} &= \lim_{r \to \infty} \frac{dt}{d\tau} \left(1 - \frac{2}{r}\right) \\ &= \frac{dt}{d\tau} \\ &= \gamma, \\ E &\to \gamma m. \end{align*}

Consider an orbit where θ=π2\theta = \frac{\pi}{2}:

Newtonian orbit

where vr=drdtv_r = \frac{dr}{dt} and vperp=rdϕdtv_{perp} = r \frac{d\phi}{dt}. The total energy is equal to:

E=12mv2GMmr=12m[(drdt)2+r2(dϕdt)2]GMmr=12m(drdt)2+12mr2(dϕdt)2GMmr=12m(drdt)2+12mr2m2r4(dϕdt)2GMmr=12m(drdt)2+L22mr2GMmr=12m(drdt)2+Ueff(r), \begin{align*} E &= \frac{1}{2} m v^2 - G \frac{Mm}{r} \\ &= \frac{1}{2} m \left[\left(\frac{dr}{dt}\right)^2 + r^2 \left(\frac{d\phi}{dt}\right)^2\right] - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \frac{1}{2} m r^2 \left(\frac{d\phi}{dt}\right)^2 - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \frac{1}{2 m r^2} m^2 r^4 \left(\frac{d\phi}{dt}\right)^2 - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \frac{L^2}{2 m r^2} - G\frac{Mm}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + U_{eff}(r), \end{align*}

where Ueff(r)=L22mr2GMmr=L22mr2mrU_{eff}(r) = \frac{L^2}{2 m r^2} - G\frac{Mm}{r} = \frac{L^2}{2 m r^2} - \frac{m}{r} (using geometrized units) is the effective potential energy and L=mr2dϕdtL = m r^2 \frac{d\phi}{dt} is the angular momentum. Below is a plot for the potential energy where G=M=m=1G = M = m = 1. Green curve is for L=0L = 0, blue is for L=0.5L = 0.5, red is for L=0.75L = 0.75 and orange is for L=1L = 1.

Newtonian potentials

Plotting the case where L=0.5L = 0.5, we can see two different energy levels:

Newtonian potential with energy

The body will always have the potential energy less than or equal the total energy (as shown by the pink line for E2E_2). E1E_1 is circular orbit where kinetic energy is always zero and so the radial velocity drdt\frac{dr}{dt}. E2E_2 is elliptical orbit and is oscillating between two values for rr. E3E_3 flies away towards infinity.

The energy and angular momentum stay constant. They are given by initial distance r0r_0, initial radial velocity v0v_0 and initial angular velocity ω0\omega_0:

L=mr02ω0,E=12mv02+Ueff(r0). \begin{align*} L &= m r_0^2 \omega_0, \\ E &= \frac{1}{2} m v_0^2 + U_{eff}(r_0). \end{align*}

Every orbit has two points where drdt=0\frac{dr}{dt} = 0 (or everywhere for circular orbit). We can solve for these:

E=L22mr2mr,0=L22mr2mrE,0=Er2mr+L22m,D=(m)24(E)L22m=m2+2EL2m,r=(m)±D2(E)=m±D2E. \begin{align*} E &= \frac{L^2}{2 m r^2} - \frac{m}{r}, \\ 0 &= \frac{L^2}{2 m r^2} - \frac{m}{r} - E, \\ 0 &= -E r^2 - mr + \frac{L^2}{2 m}, \\ D &= (-m)^2 - 4(-E)\frac{L^2}{2 m} \\ &= m^2 + 2\frac{E L^2}{m}, \\ r &= \frac{-(-m) \pm \sqrt{D}}{2(-E)} \\ &= -\frac{m \pm \sqrt{D}}{2E}. \end{align*}

If the radial velocity drdt\frac{dr}{dt} is zero everywhere, we have circular orbit. The energy is equal to the effective potential energy:

E=L22mr2mr,E = \frac{L^2}{2 m r^2} - \frac{m}{r},

this has to stay constant, taking the derivative:

ddt(L22mr2mr)=L2mr3+mr2=0,\frac{d}{dt} \left(\frac{L^2}{2 m r^2} - \frac{m}{r}\right) = - \frac{L^2}{m r^3} + \frac{m}{r^2} = 0,

and solving for rr:

L2mr3+mr2=0,rm2L2=0,r=L2m2, \begin{align*} - \frac{L^2}{m r^3} + \frac{m}{r^2} &= 0, \\ r m^2 - L^2 &= 0, r &= \frac{L^2}{m^2}, \end{align*}

or if given radius, we can solve for angular velocity:

r=m2r4m2(dϕdt)2,(dϕdt)2=1r3,dϕdt=±1rr,vperp=±1r. \begin{align*} r &= \frac{m^2 r^4}{m^2} \left(\frac{d\phi}{dt}\right)^2, \\ \left(\frac{d\phi}{dt}\right)^2 &= \frac{1}{r^3}, \\ \frac{d\phi}{dt} &= \pm \frac{1}{r\sqrt{r}}, \\ v_{perp} &= \pm \frac{1}{\sqrt{r}}. \end{align*}
L=2.661040 kg m2 s1,E=2.61033 J,r1=1.471011 m,r2=1.551011 m. \begin{align*} L &= 2.66 \cdot 10^{40}\ kg\ m^2\ s^{-1}, \\ E &= -2.6 \cdot 10^{33}\ J, \\ r_1 &= 1.47 \cdot 10^{11}\ m, \\ r_2 &= 1.55 \cdot 10^{11}\ m. \end{align*}

Ellipse Data

Semi-major axis: 1.511011m1.51 \cdot 10^{11} m

Distance of star from center: 3.99109m3.99 \cdot 10^{9} m

Consider a path parametrized by λ\lambda, the length of the tangent vector is equal to:

ϵ=(12r)(dtdλ)2+(12r)1(drdλ)2+r2(dϕdλ)2,\epsilon = -\left(1 - \frac{2}{r}\right) \left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2,

where ϵ\epsilon is:

ϵ<0,for timelike geodesics,ϵ=1,for timelike geodesics where λ=τ,ϵ=0,for lightlike geodesics,ϵ>0,for spacelike geodesics, \begin{align*} \epsilon &< 0, & &\textrm{for timelike geodesics}, \\ \epsilon &= -1, & &\textrm{for timelike geodesics where \(\lambda = \tau\)}, \\ \epsilon &= 0, & &\textrm{for lightlike geodesics}, \\ \epsilon &> 0, & &\textrm{for spacelike geodesics}, \\ \end{align*}

but I will not be considering space-like geodesics.

Substiting the constants of motion into the equation for ϵ\epsilon:

ϵ=(12r)(E12r)2+(12r)1(drdλ)2+r2(Lr2)2,ϵ=rr2E2+rr2(drdλ)2+L2r2,0=rr2E2+rr2(drdλ)2+L2r2ϵ,0=E2+(drdλ)2+r2rL2r2r2rϵ,0=E2+(drdλ)2+(12r)(L2r2ϵ),E2=(drdλ)2+(12r)(L2r2ϵ),=(drdλ)2+(L2r22L2r3+2rϵϵ),=(drdλ)2+L2r22L2r3+2rϵϵ, \begin{align*} \epsilon &= -\left(1 - \frac{2}{r}\right) \left(\frac{\mathcal{E}}{1 - \frac{2}{r}}\right)^2 + \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{\mathcal{L}}{r^2}\right)^2, \\ \epsilon &= -\frac{r}{r - 2} \mathcal{E}^2 + \frac{r}{r - 2} \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2}, \\ 0 &= -\frac{r}{r - 2} \mathcal{E}^2 + \frac{r}{r - 2} \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \epsilon, \\ 0 &= - \mathcal{E}^2 + \left(\frac{dr}{d\lambda}\right)^2 + \frac{r - 2}{r} \frac{\mathcal{L}^2}{r^2} - \frac{r - 2}{r} \epsilon, \\ 0 &= - \mathcal{E}^2 + \left(\frac{dr}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right) \left(\frac{\mathcal{L}^2}{r^2} - \epsilon\right), \\ \mathcal{E}^2 &= \left(\frac{dr}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right) \left(\frac{\mathcal{L}^2}{r^2} - \epsilon\right), \\ &= \left(\frac{dr}{d\lambda}\right)^2 + \left(\frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} + \frac{2}{r} \epsilon - \epsilon\right), \\ &= \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} + \frac{2}{r} \epsilon - \epsilon, \end{align*}

For timelike geodesics, λ=τ\lambda = \tau and ϵ=1\epsilon = -1:

E2=(drdτ)2+L2r22L2r32r+1,(Em)2=(drdτ)2+L2m2r22L2m2r32r+1,12m(Em)2=12m(drdτ)2+L22mr2L2mr3mr+m2,12(E2mm)=12m(drdτ)2+L22mr2L2mr3mr=12m(drdτ)2+(L22mr2mrL2mr3),E=12m(drdτ)2+(mL22r2mrmL2r3),=12m(drdτ)2+Ueff(r), \begin{align*} \mathcal{E}^2 &= \left(\frac{dr}{d\tau}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} - \frac{2}{r} + 1, \\ \left(\frac{E}{m}\right)^2 &= \left(\frac{dr}{d\tau}\right)^2 + \frac{L^2}{m^2 r^2} - \frac{2 L^2}{m^2 r^3} - \frac{2}{r} + 1, \\ \frac{1}{2} m \left(\frac{E}{m}\right)^2 &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \frac{L^2}{2 m r^2} - \frac{L^2}{m r^3} - \frac{m}{r} + \frac{m}{2}, \\ \frac{1}{2} \left(\frac{E^2}{m} - m\right) &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \frac{L^2}{2 m r^2} - \frac{L^2}{m r^3} - \frac{m}{r} \\ &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \left(\frac{L^2}{2 m r^2} - \frac{m}{r} - \frac{L^2}{m r^3}\right), \\ \mathscr{E} &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \left(\frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}\right), \\ &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + U_{eff}(r), \end{align*}

where E=12(E2m+m)=12(mE2+m)\mathscr{E} = \frac{1}{2} \left(\frac{E^2}{m} + m\right) = \frac{1}{2} \left(m \mathcal{E}^2 + m\right), E=Em\mathcal{E} = \frac{E}{m}, L=Lm=r2dϕdτ\mathcal{L} = \frac{L}{m} = r^2 \frac{d\phi}{d\tau} and Ueff(r)=mL22r2mrmL2r3U_{eff}(r) = \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}.

Comparing with the newtonian potential equation, we can see the difference on the left side and the difference between potentials on the right side:

E=12m(drdτ)2+(L22mr2mrL2mr3),E=12m(drdt)2+(L22mr2mr), \begin{align*} \mathscr{E} &= \frac{1}{2} m \left(\frac{dr}{d\tau}\right)^2 + \left(\frac{L^2}{2 m r^2} - \frac{m}{r} - \frac{L^2}{m r^3}\right), \\ E &= \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 + \left(\frac{L^2}{2 m r^2} - \frac{m}{r}\right), \\ \end{align*}

we see that the right sides are almost identical apart from the extra term in the potential. The last extra term vanishes at further distances.

Below is a plot of the effective potential energy where m=1m = 1 using geometrized units. Red curve is for L=2\mathcal{L} = 2, orange for L=10\mathcal{L} = 10, green for L=15\mathcal{L} = 15 and blue for L=20\mathcal{L} = 20:

Schwarzschild potentials

I will use the green line where L=15\mathcal{L} = 15. We can start with two energies:

Schwarzschild potential with energies

for E1E_1, there are two distances - r1r_1 and r2r_2. If the distance is r1r_1, the body falls into the other body. If the distance is r2r_2, the body flies away towards infinity. E2E_2 is unstable circular orbit. If we change the total energy by even a small amount, then the body either falls into the other body or flies away towards infinity.

There are also two other energy levels that cannot be seen on the image above:

Schwarzschild potential with energies 2

E3E_3 shows the energy level of stable circular orbit and E4E_4 shows the energy level of elliptical orbit.

Similarly, the constants of motion can be given by the initial distance r0r_0, intial radial velocity v0v_0 and the initial angular velocity ω0\omega_0.:

L=r02ω0,E=12mv02+Ueff(r0), \begin{align*} \mathcal{L} &= r_0^2 \omega_0, \\ \mathscr{E} &= \frac{1}{2} m v_0^2 + U_{eff}(r_0), \end{align*}

where Ueff(r)=mL22r2mrmL2r3U_{eff}(r) = \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}. Setting drdτ=0\frac{dr}{d\tau} = 0, we can solve for extramal distances:

E=mL22r2mrmL2r3,0=Emr+mL22r2mL2r3,0=r3Er2m+rmL22mL2, \begin{align*} \mathscr{E} &= \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}, \\ 0 &= - \mathscr{E} - \frac{m}{r} + \frac{m \mathcal{L}^2}{2 r^2} - \frac{m \mathcal{L}^2}{r^3}, \\ 0 &= - r^3 \mathscr{E} - r^2 m + r \frac{m \mathcal{L}^2}{2} - m \mathcal{L}^2, \\ \end{align*}

this can be solved by the cubic equation.

For circular orbits drdτ=0\frac{dr}{d\tau} = 0 and the energy is equal to the effective potential energy. We can solve for the radius by taking the derivative (since the potential stays constant):

E=mL22r2mrmL2r3,0=ddr(mL2r3+mL22r2mr)=3mL2r4mL2r3+mr2,0=r2mrmL2+3mL2,D=(mL2)24(m)(3mL2)=m2L412m2L2,r=(mL2)±m2L412m2L22m=mL2±mL412L22m=L2±L412L22, \begin{align*} \mathscr{E} &= \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r} - \frac{m \mathcal{L}^2}{r^3}, \\ 0 &= \frac{d}{dr}\left(- \frac{m \mathcal{L}^2}{r^3} + \frac{m \mathcal{L}^2}{2 r^2} - \frac{m}{r}\right) \\ &= 3 \frac{m \mathcal{L}^2}{r^4} - \frac{m \mathcal{L}^2}{r^3} + \frac{m}{r^2}, \\ 0 &= r^2 m - r m \mathcal{L}^2 + 3 m \mathcal{L}^2, \\ D &= \left(-m \mathcal{L}^2\right)^2 - 4 (m) (3 m \mathcal{L}^2) \\ &= m^2 \mathcal{L}^4 - 12 m^2 \mathcal{L}^2, \\ r &= \frac{-(-m \mathcal{L}^2) \pm \sqrt{m^2 \mathcal{L}^4 - 12 m^2 \mathcal{L}^2}}{2m} \\ &= \frac{m \mathcal{L}^2 \pm m\sqrt{\mathcal{L}^4 - 12 \mathcal{L}^2}}{2m} \\ &= \frac{\mathcal{L}^2 \pm \sqrt{\mathcal{L}^4 - 12 \mathcal{L}^2}}{2}, \end{align*}

where - is the unstable orbit and ++ is the stable orbit.

The stable and unstable orbits can converge when discriminant is zero:

D=m2L412m2L2=0,m2L4=12m2L2,L2=12, \begin{align*} D &= m^2 \mathcal{L}^4 - 12 m^2 \mathcal{L}^2 = 0, \\ m^2 \mathcal{L}^4 &= 12 m^2 \mathcal{L}^2, \\ \mathcal{L}^2 &= 12, \end{align*}

substituting into the equation for rr:

r=L2±L412L22=L22=122=6=3rs, \begin{align*} r &= \frac{\mathcal{L}^2 \pm \sqrt{\mathcal{L}^4 - 12 \mathcal{L}^2}}{2} \\ &= \frac{\mathcal{L}^2}{2} \\ &= \frac{12}{2} \\ &= 6 \\ &= 3 r_s, \end{align*}

this is the inner most stable circular orbit.

To predict the nature of orbit, we can use the derivative of the effective potential:

Ueff(r)=3mL2r4mL2r3+mr2U'_{eff}(r) = 3\frac{m \mathcal{L}^2}{r^4} - \frac{m \mathcal{L}^2}{r^3} + \frac{m}{r^2}
L=4.451015 kg m2 s1,E=2.61033 J,r1=2.92103 m,r2=7.541010 m,r3=NaN10NaN m. \begin{align*} L &= 4.45 \cdot 10^{15}\ kg\ m^2\ s^{-1}, \\ E &= -2.6 \cdot 10^{33}\ J, \\ r_1 &= 2.92 \cdot 10^{3}\ m, \\ r_2 &= 7.54 \cdot 10^{10}\ m, \\ r_3 &= NaN \cdot 10^{NaN}\ m. \end{align*}

Ellipse Data

Semi-major axis: 3.771010m3.77 \cdot 10^{10} m

Distance of star from center: 3.771010m3.77 \cdot 10^{10} m

For lightlike geodesics, ϵ=0\epsilon = 0:

E2=(drdλ)2+L2r22L2r3+2rϵϵ=(drdλ)2+L2r22L2r3. \begin{align*} \mathcal{E}^2 &= \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3} + \frac{2}{r} \epsilon - \epsilon \\ &= \left(\frac{dr}{d\lambda}\right)^2 + \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3}. \end{align*}

Consider circular orbits (drdλ\frac{dr}{d\lambda}):

E2=L2r22L2r3,\mathcal{E}^2 = \frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3},

taking the derivative:

ddr(L2r22L2r3)=2L2r3+32L2r4=0,\frac{d}{dr} \left(\frac{\mathcal{L}^2}{r^2} - \frac{2\mathcal{L}^2}{r^3}\right) = -2\frac{\mathcal{L}^2}{r^3} + 3 \frac{2\mathcal{L}^2}{r^4} = 0,

and solving for rr:

2L2r3+32L2r4=0,2L2r332L2r4=0,2rL26L2=0,r3=0,r=3=32rs, \begin{align*} -2\frac{\mathcal{L}^2}{r^3} + 3 \frac{2\mathcal{L}^2}{r^4} &= 0, \\ 2\frac{\mathcal{L}^2}{r^3} - 3 \frac{2\mathcal{L}^2}{r^4} &= 0, \\ 2r \mathcal{L}^2 - 6\mathcal{L}^2 &= 0, \\ r - 3 &= 0, \\ r &= 3 \\ &= \frac{3}{2} r_s, \\ \end{align*}

this is the radius of the photon sphere. Light rays at this distance orbit the body in circles.