BackFlow Curves
Given a vector field, F(r) parameterized by r(t), the tangent vector is equal to the vector field:
dtdr(t)=F(r(t)) For 2D coordinates, this would imply:
dtdxx^+dtdyy^dtdxdtdy=Fx(x(t),y(t))x^+Fy(x(t),y(t))y^,=Fx(x(t),y(t)),=Fy(x(t),y(t)). Consider the following vector field:
F(x,y)=−yx^+xy^ Constructing a system of two differential equations:
dtdxdtdy=−y,=x. The flow curves seem to plot circles, the parameterized coordinates are equal to:
x(t)y(t)=acost,=asint. The derivatives are equal to:
dtdxdtdy=−asint,=acost. This satisfies the original differential equations.
The inverse square law in vector form is equal to:
F(rs)=rs2kr^s=krs3rs, where k is a constant.
The vector rs is the separation vector:
rs=r−rp, where r is the current position that we are evaluating at and rp is a constant position of the point creating the field.
Converting to 3D cartesian coordinates:
rsrsF(x,y,z)=r−rp=(x−xp)x^+(y−yp)y^+(z−zp)z^,=(x−xp)2+(y−yp)2+(z−zp)2,=krs3(x−xp)x^+(y−yp)y^+(z−zp)z^=krs3x−xpx^+krs3y−ypy^+krs3z−zpz^. Separating into a system of differential equations:
dtdxdtdydtdz=krs3x−xp,=krs3y−yp,=krs3z−zp. In 2D, the z coordinate is always zero for every object.
Dividing the third equation by the second:
dydz∫z0zz−zpdz[lnz−zp∣]z0zlnz0−zpz−zpz0−zpz−zp∣z−zp∣z=y−ypz−zp,=∫y0yy−ypdy,=[ln∣y−yp∣]y0y,=lny0−ypy−yp,=y0−ypy−yp,=y0−yp(y−yp)(z0−zp),=zp±y0−yp(y−yp)(z0−zp). Dividing the second equation by the first:
dxdy∫y0yy−ypdy[ln∣y−yp∣]y0ylny0−ypy−ypy0−ypy−yp∣y−yp∣y=x−xpy−yp,=∫x0xx−xpdx,=[ln∣x−xp∣]x0x,=lnx0−xpx−xp,=x0−xpx−xp,=x0−xp(x−xp)(y0−yp),=yp±x0−xp(x−xp)(y0−yp). Substituting into the equation for z:
z=zp±y0−yp(yp±x0−xp(x−xp)(y0−yp)−yp)(z0−zp)=zp±y0−yp±x0−xp(x−xp)(y0−yp)(z0−zp)=zp+(x0−xp)(y0−yp)(x−xp)(y0−yp)(z0−zp)=zp+x0−xp(x−xp)(z0−zp). Substituting into the equation for r:
r=(x−xp)2+(yp±x0−xp(x−xp)(y0−yp)−yp)2+(zp+x0−xp(x−xp)(z0−zp)−zp)2=(x−xp)2+(±x0−xp(x−xp)(y0−yp))2+(x0−xp(x−xp)(z0−zp))2=(x−xp)1+(x0−xp)2(y0−yp)2+(x0−xp)2(z0−zp)2=(x−xp)(x0−xp)2(x0−xp)2+(y0−yp)2+(z0−zp)2=(x−xp)x0−xprs,0. Substituting into the equation for dtdx and solving:
dtdxdxdt∫0tdtt3k(x0−xp)3rs,03(x−xp)3(x−xp)3x−xpx=k((x−xp)x0−xprs,0)3x−xp=k(x−xp)3(x0−xp)3rs,03x−xp=k(x−xp)2rs,03(x0−xp)3,=k(x0−xp)3rs,03(x−xp)2,=k(x0−xp)3rs,03∫x0x(x−xp)2dx,=k(x0−xp)3rs,03[31(x−xp)3]x0x=3k(x0−xp)3rs,03((x−xp)3−(x0−xp)3)=3k(x0−xp)3rs,03(x−xp)3−3krs,03,=t+3krs,03,=rs,033k(x0−xp)3t+(x0−xp)3,=rs,0x0−xp33kt+rs,03,=xp+33kt+rs,03rs,0x0−xp. Substituting into the equation for y:
y=yp±x0−xp(rs,0x0−xp33kt+rs,03+xp−xp)(y0−yp)=yp±x0−xprs,0x0−xp33kt+rs,03(y0−yp)=yp±33kt+rs,03rs,0y0−yp. Finally, substituting into the equation for z:
z=zp+x0−xp(xp+rs,0x0−xp33kt+rs,03−xp)(z0−zp)=zp+x0−xprs,0x0−xp33kt+rs,03(z0−zp)=zp+33kt+rs,03rs,0z0−zp. The parameterized coordinates are equal to (choosing the plus sign):
x(t)y(t)z(t)=xp+33kt+rs,03rs,0x0−xp,=yp+33kt+rs,03rs,0y0−yp,=zp+33kt+rs,03rs,0z0−zp. Or in vector form:
r(t)r^s,0rs,0=rp+33kt+rs,03r^s,0,=rs,0rs,0,=r0−rp, where rp is the position vector of the source and r0 is the initial position vector.