Back

Dielectrics and Polarization

In many capacitors there is an insulating material between the plates, called a dielectric. They can be used to maintain separation between the plates. It has been found that the capacitance increases when filled with dielectric:

C=keC0,C = k_e C_0,

where C0C_0 is the capacitance without the dielectric and kek_e is the dielectric constant. Each dielectric has a maximum value of electric field before the dielectric breaks down, called the dielectric strength. Below is a table of dielectric materials:

Materialκe\boldsymbol{\kappa_e}Dielectric strength
Air1.000593
Paper3.716
Glass4-69
Water80-

There are two types of dielectrics: polar and non polar. Polar have permanent electric dipole moments, an example is water. Non polar dielectrics don't have permanent electric dipole moments but when an external electric field E0\boldsymbol{E_0} is present, the electric dipole moments are induced.

E0=0\boldsymbol{E_0} = 0E00\boldsymbol{E_0} \neq 0
Polar
Non polar

In both cases E0\boldsymbol{E_0} points to the right and the molecules generate an electric field EP\boldsymbol{E_P} in the direction opposite to E0\boldsymbol{E_0} The total electric field is:

E=E0+EP, \boldsymbol{E} = \boldsymbol{E_0} + \boldsymbol{E_P},

implying E<E0|\boldsymbol{E}| < |\boldsymbol{E_0}|.

To calculate the average electric fields that the dipoles produce, suppose a cylinder of surface area AA and height hh with NN uniformly spread electric dipole moments p\boldsymbol{p}:

Polarization vectors

The polarization vector is the net electric dipole moment per unit volume:

P=1Ahi=1Npi,P=NpAh. \begin{align*} \boldsymbol{P} &= \frac{1}{Ah} \sum_{i=1}^N \boldsymbol{p_i}, \\ P &= \frac{Np}{Ah}. \end{align*}

The inner dipoles cancel each other out and the only dipoles left are at the edges:

Dipoles in cylinderDipoles cancellation

The charge QPQ_P produces the same electric dipole moment as the total electric dipole moments produced by the small dipoles:

QPh=Np,QP=Nph. \begin{align*} Q_P h &= Np, \\ Q_P &= \frac{Np}{h}. \end{align*}

The surface charge density is equal to:

σP=QPA=NpAh=P.\sigma_P = \frac{Q_P}{A} = \frac{Np}{Ah} = P.

In general, the surface charge density is equal to:

σP=Pn^=Pcosθ,\sigma_P = \boldsymbol{P} \cdot \boldsymbol{\hat{n}} = P \cos \theta,

where n^\boldsymbol{\hat{n}} is normal vector of the surface and θ\theta the angle between the normal and the polarization vector.

The electric field is constant on the surface of the cylinder. By Gauss's law:

SEPdA=Qϵ0,EPA=Qϵ0,EP=σPϵ0=Pϵ0. \begin{align*} \oiint_S \boldsymbol{E_P} \cdot d\boldsymbol{A} &= \frac{Q}{\epsilon_0}, \\ E_P A &= \frac{Q}{\epsilon_0}, \\ E_P &= \frac{\sigma_P}{\epsilon_0} \\ &= \frac{P}{\epsilon_0}. \end{align*}

Since the electric field is opposite to P\boldsymbol{P}, EP\boldsymbol{E_P} is equal to:

EP=Pϵ0.\boldsymbol{E_P} = -\frac{\boldsymbol{P}}{\epsilon_0}.

The total electric field is equal to:

E=E0+EP=E0Pϵ0. \begin{align*} \boldsymbol{E} &= \boldsymbol{E_0} + \boldsymbol{E_P} \\ &= \boldsymbol{E_0} - \frac{\boldsymbol{P}}{\epsilon_0}. \end{align*}

The polarization P\boldsymbol{P} is linearly proportional to E\boldsymbol{E}:

P=ϵ0χ0E,\boldsymbol{P} = \epsilon_0 \chi_0 \boldsymbol{E},

where χ0\chi_0 is the electric susceptibility.

Substituting into the previous equation:

E=E0χ0E,E0=E(1+χ0)=κeE. \begin{align*} \boldsymbol{E} &= \boldsymbol{E_0} - \chi_0 \boldsymbol{E}, \\ \boldsymbol{E_0} &= \boldsymbol{E} (1 + \chi_0) \\ &= \kappa_e \boldsymbol{E}. \end{align*}

where κe=1+χ0\kappa_e = 1 + \chi_0.

κe\kappa_e is always greater than one, implying:

E=E0κe<E0.\boldsymbol{E} = \frac{\boldsymbol{E_0}}{\kappa_e} < \boldsymbol{E_0}.

The electric field in the presence of dielectric material is lower than the electric field without it.

In the absence of dielectric, the electric field is equal to:

SE0dA=Qϵ0,E0A=Qϵ0,E0=σϵ0. \begin{align*} \oiint_S \boldsymbol{E_0} \cdot d\boldsymbol{A} &= \frac{Q}{\epsilon_0}, \\ E_0 A &= \frac{Q}{\epsilon_0}, \\ E_0 &= \frac{\sigma}{\epsilon_0}. \end{align*}

In the presence of a dielectric a second charge QPQ_P gets induced:

Gauss law for dielectrics

where the orange border is the gaussian surface. The charge enclosed is QQPQ - Q_P. Using Gauss's law:

SEdA=QQPϵ0,EA=QQPϵ0,E=QQPϵ0A. \begin{align*} \oiint_S \boldsymbol{E} \cdot d\boldsymbol{A} &= \frac{Q - Q_P}{\epsilon_0}, \\ E A &= \frac{Q - Q_P}{\epsilon_0}, \\ E &= \frac{Q - Q_P}{\epsilon_0 A}. \end{align*}

As found earlier, the electric field is weakened by the dielectric material:

E=E0κe=σκeϵ0=QQPϵ0A,σκeϵ0=QQPϵ0A,QQPϵ0=Qκeϵ0, \begin{align*} E &= \frac{E_0}{\kappa_e} = \frac{\sigma}{\kappa_e \epsilon_0} = \frac{Q - Q_P}{\epsilon_0 A}, \\ \frac{\sigma}{\kappa_e \epsilon_0} &= \frac{Q - Q_P}{\epsilon_0 A}, \\ \frac{Q - Q_P}{\epsilon_0} &= \frac{Q}{\kappa_e \epsilon_0}, \end{align*}

substituting into Gauss's law:

SEdA=Qκeϵ0,Sκeϵ0EdA=Q,SDdA=Q, \begin{align*} \oiint_S \boldsymbol{E} \cdot d\boldsymbol{A} &= \frac{Q}{\kappa_e \epsilon_0}, \\ \oiint_S \kappa_e \epsilon_0 \boldsymbol{E} \cdot d\boldsymbol{A} &= Q, \\ \oiint_S \boldsymbol{D} \cdot d\boldsymbol{A} &= Q, \end{align*}

wher\epsilone D=κeϵ0E\boldsymbol{D} = \kappa_e \epsilon_0 \boldsymbol{E} is called the dielectric displacement vector.

Consider a parallel plate capacitor with the plates having a distance dd between them and a dielectric of thickness ss and dielectric constant κe\kappa_e inserted between them:

Gauss law for dielectrics

The voltage is equal to:

U=+Edl=0dE dl=E0(ds)EDs=σϵ0(ds)σϵ0κes=σϵ0(ds+sκe)=σϵ0[ds(11κe)]=QAϵ0[ds(11κe)]<0,U=QAϵ0[ds(11κe)]. \begin{align*} U &= -\int_+^- \boldsymbol{E} \cdot d\boldsymbol{l} \\ &= -\int_0^d E\ dl \\ &= -E_0 (d - s) - E_D s \\ &= -\frac{\sigma}{\epsilon_0} (d - s) - \frac{\sigma}{\epsilon_0 \kappa_e} s \\ &= -\frac{\sigma}{\epsilon_0} \left(d - s + \frac{s}{\kappa_e}\right) \\ &= -\frac{\sigma}{\epsilon_0} \left[d - s\left(1 - \frac{1}{\kappa_e}\right)\right] \\ &= -\frac{Q}{A \epsilon_0} \left[d - s\left(1 - \frac{1}{\kappa_e}\right)\right] < 0, \\ |U| &= \frac{Q}{A \epsilon_0} \left[d - s\left(1 - \frac{1}{\kappa_e}\right)\right]. \end{align*}

The capacitance is equal to:

C=QU=Aϵ0ds(11κe). \begin{align*} C &= \frac{Q}{|U|} \\ &= \frac{A \epsilon_0}{d - s\left(1 - \frac{1}{\kappa_e}\right)}. \end{align*}

It could be useful to check the following limits:

  1. ss approaching zero:

    lims0C=Aϵ0d,\lim_{s \to 0} C = \frac{A \epsilon_0}{d},

    this is identical to the case without dielectric.

  2. dielectric constant approaching zero:

    limκe1C=Aϵ0d,\lim_{\kappa_e \to 1} C = \frac{A \epsilon_0}{d},

    this is also identical to the case without dielectric.

  3. ss approaching dd - filled with dielectric:

    limsdC=Aϵ0κed=κeC0,\lim_{s \to d} C = \frac{A \epsilon_0 \kappa_e}{d} = \kappa_e C_0,

    this is identical to the first equation.