Back

Gauss's Law

By Gauss's Law, the electric flux through a closed surface is equal to the total charge enclosed within that surface divided by the permittivity:

ΦE=SEdA=Qϵ0,Integral formE=ρϵ0ϵr,Differential form \begin{align*} \Phi_E &= \oiint_S \boldsymbol{E} \cdot d \boldsymbol{A} = \frac{Q}{\epsilon_0}, & &\mathrm{Integral\ form}\\ \boldsymbol{\nabla} \cdot \boldsymbol{E} &= \frac{\rho}{\epsilon_0 \epsilon_r}, & &\mathrm{Differential\ form} \end{align*}

where:

ϵ08.851012 Fm1,ke=14πϵ0    ϵ0=14πke, \begin{align*} \epsilon_0 &\approx 8.85 \cdot 10^{-12}\ Fm^{-1}, \\ k_e &= \frac{1}{4 \pi \epsilon_0} \implies \epsilon_0 = \frac{1}{4 \pi k_e}, \end{align*}

and where AA is the surface area of the closed surface.

A line has a constant linear charge density λ\lambda. Its ends lie in points AA and BB. What is the electric field at point CC?

This example builds on the linear algebra of line charge from electric field, particularly:

hy=y^(CA),h=hyy^,H=A+h,s=CH. \begin{align*} h_y &= \boldsymbol{\hat{y}} \cdot (C - A), \\ \boldsymbol{h} &= h_y \boldsymbol{\hat{y}}, \\ H &= A + \boldsymbol{h}, \\ \boldsymbol{s} &= C - H. \end{align*}
Line charge illustration

Since the charge density λ\lambda is constant, the charge is equal to:

Q=λl.Q = \lambda l.

Then the electric flux is equal to:

ΦE=SEdA=λlϵ0\Phi_E = \oiint_S \boldsymbol{E} \cdot d \boldsymbol{A} = \frac{\lambda l}{\epsilon_0}

The electric field's direction and magnitude does not depend on AA, the equation simplifies:

EA=λlϵ0,2Eπsl=λlϵ0,E=λ2πs14πke=λs12ke=2keλs, \begin{align*} E A &= \frac{\lambda l}{\epsilon_0}, \\ 2 E \pi s l &= \frac{\lambda l}{\epsilon_0}, \\ E &= \frac{\lambda}{2 \pi s \frac{1}{4 \pi k_e}} \\ &= \frac{\lambda}{s \frac{1}{2 k_e}} \\ &= \frac{2 k_e \lambda}{s}, \\ \end{align*}

The vector is pointing in the direction perpendicular to the line. This is identical to the equation derived in the electric field section with the infinite line charge.

A spherical conductor of radius rcr_c has a constant surface area charge density σ\sigma. What is the electric field at a point outside the sphere at a distance rr from the center of the sphere?

Line charge illustration

The charge density σ\sigma is constant. Thus, the charge is equal to:

Q=σS,=4σπrc2. \begin{align*} Q &= \sigma S, \\ &= 4 \sigma \pi r_c^2. \end{align*}

The electric flux is equal to:

ΦE=SEdA=4σπrc2ϵ0\Phi_E = \oiint_S \boldsymbol{E} \cdot d \boldsymbol{A} = \frac{4 \sigma \pi r_c^2}{\epsilon_0}

Similar to previous scenario, the electric field does not depend on AA, simplifying the equation:

EA=4σπrc2ϵ0,4Eπr2=4σπrc2ϵ0,E=rc2σr2ϵ0, \begin{align*} E A &= \frac{4 \sigma \pi r_c^2}{\epsilon_0}, \\ 4 E \pi r^2 &= \frac{4 \sigma \pi r_c^2}{\epsilon_0}, \\ E &= \frac{r_c^2 \sigma}{r^2 \epsilon_0}, \\ \end{align*}

A plane has a uniform charge density σ\sigma. What is the electric field anywhere in space?

Infinite plane illustration

The plane divides the space into two sectors, z<0z < 0 and z>0z > 0 and E1=E2\boldsymbol{E_1} = -\boldsymbol{E_2}. Both vector fields have the same magnitude.

We construct a cylinder:

Infinite plane cylinder illustration

Where A=A1=A2A = A_1 = A_2.

Then the total electric flux is equal to:

ΦE=SEdA=S1E1dA1+S2E2dA2+S3E3dA3+S4E4dA4=E1A1+E2A2=2EA. \begin{align*} \Phi_E &= \oiint_S \boldsymbol{E} \cdot d\boldsymbol{A} \\ &= \iint_{S_1} \boldsymbol{E_1} \cdot d\boldsymbol{A_1} + \iint_{S_2} \boldsymbol{E_2} \cdot d\boldsymbol{A_2} + \iint_{S_3} \boldsymbol{E_3} \cdot d\boldsymbol{A_3} + \iint_{S_4} \boldsymbol{E_4} \cdot d\boldsymbol{A_4} \\ &= E_1 A_1 + E_2 A_2 \\ &= 2 E A. \end{align*}

Since the charge density is constant, the total charge is equal to:

Q=σAQ = \sigma A

Using Gauss's law:

2EA=σAϵ0,E=σ2ϵ0,E={   σ2ϵ0z^z>0,σ2ϵ0z^z<0. \begin{align*} 2 E A &= \frac{\sigma A}{\epsilon_0}, \\ E &= \frac{\sigma}{2 \epsilon_0}, \\ \boldsymbol{E} &= \begin{cases} \ \ \ \frac{\sigma}{2 \epsilon_0}\boldsymbol{\hat{z}} & z > 0, \\ -\frac{\sigma}{2 \epsilon_0}\boldsymbol{\hat{z}} & z < 0. \end{cases} \end{align*}

Two parallel infinite planes at a distance dd. The planes have opposite charge densities with equal magnitude σ\sigma. What is the electric field anywhere in space?

Parallel planes illustration

The electric field is the sum of electric fields caused by each plane:

E=E++E,E+={   σ2ϵ0z^z>d2,σ2ϵ0z^z<d2,E={σ2ϵ0z^z>d2,   σ2ϵ0z^z<d2,E={   0   z>d2 or z<d2,σϵ0z^d2<z<d2. \begin{align*} \boldsymbol{E} &= \boldsymbol{E_+} + \boldsymbol{E_-}, \\ \boldsymbol{E_+} &= \begin{cases} \ \ \ \frac{\sigma}{2 \epsilon_0}\boldsymbol{\hat{z}} & z > \frac{d}{2}, \\ -\frac{\sigma}{2 \epsilon_0}\boldsymbol{\hat{z}} & z < \frac{d}{2}, \end{cases} \\ \boldsymbol{E_-} &= \begin{cases} -\frac{\sigma}{2 \epsilon_0}\boldsymbol{\hat{z}} & z > -\frac{d}{2}, \\ \ \ \ \frac{\sigma}{2 \epsilon_0}\boldsymbol{\hat{z}} & z < -\frac{d}{2}, \end{cases} \\ \boldsymbol{E} &= \begin{cases} \ \ \ \boldsymbol{0} & \ \ \ z > \frac{d}{2}\ \textrm{or}\ z < -\frac{d}{2}, \\ -\frac{\sigma}{\epsilon_0}\boldsymbol{\hat{z}} & -\frac{d}{2} < z < \frac{d}{2}. \end{cases} \end{align*}