Back Derivation of the Schwarzschild Metric The coordinates used are ( t , r , θ , ϕ ) (t, r, \theta, \phi) ( t , r , θ , ϕ ) , where θ \theta θ is the colatitude and ϕ \phi ϕ is the longitude. The r r r coordinate will be explained in the next section .
The general Einstein field equations are given by:
R μ ν − 1 2 R g μ ν + Λ g μ ν = 8 π T μ ν . R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = 8 \pi T_{\mu\nu}. R μν − 2 1 R g μν + Λ g μν = 8 π T μν . The metric is static - independent of the time coordinate:
g μ ν , t = 0. g_{\mu\nu,t} = 0. g μν , t = 0. The solution is vacuum (T μ ν = 0 T_{\mu\nu} = 0 T μν = 0 ) and with zero cosmological constant:
R μ ν − 1 2 R g μ ν = 0 , R μ ν g μ ν − 1 2 R g μ ν g μ ν = 0 , R − 1 2 R δ μ μ = 0 , R − 2 R = 0 , R = 0 , \begin{align*} R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 0, \\ R_{\mu\nu} g^{\mu\nu} - \frac{1}{2} R g_{\mu\nu} g^{\mu\nu} = 0, \\ R - \frac{1}{2} R \delta^{\mu}_{\mu} = 0, \\ R - 2 R = 0, \\ R = 0, \end{align*} R μν − 2 1 R g μν = 0 , R μν g μν − 2 1 R g μν g μν = 0 , R − 2 1 R δ μ μ = 0 , R − 2 R = 0 , R = 0 , simplifying the Einstein field equations:
R μ ν = 0. R_{\mu\nu} = 0. R μν = 0. The metric is in the form:
g μ ν = [ g 00 g 01 g 02 g 03 g 10 g 11 g 12 g 13 g 20 g 21 g 22 g 23 g 30 g 31 g 32 g 33 ] g_{\mu\nu} = \begin{bmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{10} & g_{11} & g_{12} & g_{13} \\ g_{20} & g_{21} & g_{22} & g_{23} \\ g_{30} & g_{31} & g_{32} & g_{33} \end{bmatrix} g μν = g 00 g 10 g 20 g 30 g 01 g 11 g 21 g 31 g 02 g 12 g 22 g 32 g 03 g 13 g 23 g 33 The spacetime is spherically symmetric, meaning it is invariant under rotations, mirroring and time reversals. Taking the mirror image for the coordinate σ ≠ 1 \sigma \neq 1 σ = 1 (r r r cannot be negative) means:
x ~ σ = − x σ , \tilde{x}^{\sigma} = -x^{\sigma}, x ~ σ = − x σ , and the metric is transformed as follows (where μ ≠ σ \mu \neq \sigma μ = σ ):
g ~ μ σ = ∂ x α ∂ x ~ μ ∂ x β ∂ x ~ σ g α β = − ∂ x α ∂ x ~ μ g α σ = − g μ σ . \begin{align*} \tilde{g}_{\mu \sigma} &= \frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\sigma}} g_{\alpha\beta} \\ &= -\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} g_{\alpha\sigma} \\ &= -g_{\mu\sigma}. \end{align*} g ~ μ σ = ∂ x ~ μ ∂ x α ∂ x ~ σ ∂ x β g α β = − ∂ x ~ μ ∂ x α g α σ = − g μ σ . Since the metric is invariant under this transformation, this implies:
g μ σ = 0 , σ ≠ μ , g_{\mu\sigma} = 0, \qquad \sigma \neq \mu, g μ σ = 0 , σ = μ , thus, the metric is diagonalized:
g μ ν = [ g 00 0 0 0 0 g 11 0 0 0 0 g 22 0 0 0 0 g 33 ] g_{\mu\nu} = \begin{bmatrix} g_{00} & 0 & 0 & 0 \\ 0 & g_{11} & 0 & 0 \\ 0 & 0 & g_{22} & 0 \\ 0 & 0 & 0 & g_{33} \end{bmatrix} g μν = g 00 0 0 0 0 g 11 0 0 0 0 g 22 0 0 0 0 g 33 When θ \theta θ and ϕ \phi ϕ are constant, g 00 g_{00} g 00 and g 11 g_{11} g 11 should only depend on r r r (by symmetry):
g μ ν = [ − A ( r ) 0 0 0 0 B ( r ) 0 0 0 0 g 22 0 0 0 0 g 33 ] g_{\mu\nu} = \begin{bmatrix} -A(r) & 0 & 0 & 0 \\ 0 & B(r) & 0 & 0 \\ 0 & 0 & g_{22} & 0 \\ 0 & 0 & 0 & g_{33} \end{bmatrix} g μν = − A ( r ) 0 0 0 0 B ( r ) 0 0 0 0 g 22 0 0 0 0 g 33 and g 22 g_{22} g 22 and g 33 g_{33} g 33 should use metric for a sphere:
g μ ν = [ − A ( r ) 0 0 0 0 B ( r ) 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ ] g_{\mu\nu} = \begin{bmatrix} -A(r) & 0 & 0 & 0 \\ 0 & B(r) & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{bmatrix} g μν = − A ( r ) 0 0 0 0 B ( r ) 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ and when r → ∞ r \to \infty r → ∞ , the metric should be the same as the metric for a sphere:
lim r → ∞ g μ ν = [ − 1 0 0 0 0 1 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ ] \lim_{r \to \infty} g_{\mu\nu} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{bmatrix} r → ∞ lim g μν = − 1 0 0 0 0 1 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ The inverse metric is equal to:
g μ ν = [ − 1 A ( r ) 0 0 0 0 1 B ( r ) 0 0 0 0 1 r 2 0 0 0 0 1 r 2 sin 2 θ ] g^{\mu\nu} = \begin{bmatrix} -\frac{1}{A(r)} & 0 & 0 & 0 \\ 0 & \frac{1}{B(r)} & 0 & 0 \\ 0 & 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 0 & \frac{1}{r^2 \sin^2 \theta} \end{bmatrix} g μν = − A ( r ) 1 0 0 0 0 B ( r ) 1 0 0 0 0 r 2 1 0 0 0 0 r 2 s i n 2 θ 1 The general equation for Christoffel symbols is as follows:
Γ λ μ σ = 1 2 g λ κ ( g κ μ , σ + g κ σ , μ − g μ σ , κ ) , \Gamma^{\lambda}{}_{\mu\sigma} = \frac{1}{2} g^{\lambda\kappa} (g_{\kappa\mu,\sigma} + g_{\kappa\sigma,\mu} - g_{\mu\sigma,\kappa}), Γ λ μ σ = 2 1 g λκ ( g κ μ , σ + g κσ , μ − g μ σ , κ ) , The inverse metric is diagonal, so the equation simplifies:
Γ λ μ σ = 1 2 g λ λ ( g λ μ , σ + g λ σ , μ − g μ σ , λ ) , \Gamma^{\lambda}{}_{\mu\sigma} = \frac{1}{2} g^{\lambda\lambda} (g_{\lambda\mu,\sigma} + g_{\lambda\sigma,\mu} - g_{\mu\sigma,\lambda}), Γ λ μ σ = 2 1 g λλ ( g λ μ , σ + g λσ , μ − g μ σ , λ ) , Splitting the equation, for the time coordinate, we have:
Γ 0 μ σ = − 1 2 A ( r ) ( g 0 μ , σ + g 0 σ , μ − g μ σ , 0 ) = − 1 2 A ( r ) ( g 0 μ , σ + g 0 σ , μ ) , Γ 0 0 σ = Γ 0 σ 0 = − 1 2 A ( r ) g 00 , σ = − 1 2 A ( r ) g 00 , σ , Γ 0 μ ν = [ 0 A ′ ( r ) 2 A ( r ) 0 0 A ′ ( r ) 2 A ( r ) 0 0 0 0 0 0 0 0 0 0 0 ] \begin{align*} \Gamma^0{}_{\mu\sigma} &= -\frac{1}{2 A(r)} (g_{0\mu,\sigma} + g_{0\sigma,\mu} - g_{\mu\sigma,0}) \\ &= -\frac{1}{2A(r)} (g_{0\mu,\sigma} + g_{0\sigma,\mu}), \\ \Gamma^0{}_{0\sigma} = \Gamma^0{}_{\sigma0} &= -\frac{1}{2A(r)} g_{00,\sigma} \\ &= -\frac{1}{2A(r)} g_{00,\sigma}, \\ \Gamma^0{}_{\mu\nu} &= \begin{bmatrix} 0 & \frac{A'(r)}{2A(r)} & 0 & 0 \\ \frac{A'(r)}{2A(r)} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{align*} Γ 0 μ σ Γ 0 0 σ = Γ 0 σ 0 Γ 0 μν = − 2 A ( r ) 1 ( g 0 μ , σ + g 0 σ , μ − g μ σ , 0 ) = − 2 A ( r ) 1 ( g 0 μ , σ + g 0 σ , μ ) , = − 2 A ( r ) 1 g 00 , σ = − 2 A ( r ) 1 g 00 , σ , = 0 2 A ( r ) A ′ ( r ) 0 0 2 A ( r ) A ′ ( r ) 0 0 0 0 0 0 0 0 0 0 0 for the r r r coordinate, we have:
Γ 1 μ σ = 1 2 B ( r ) ( g 1 μ , σ + g 1 σ , μ − g μ σ , 1 ) , Γ 1 0 σ = Γ 1 σ 0 = − 1 2 B ( r ) g 11 g 0 σ , 1 , Γ 1 1 σ = Γ 1 σ 1 = 1 2 B ( r ) g 11 , σ , Γ 1 2 σ = Γ 1 σ 2 = − 1 2 B ( r ) g 2 σ , 1 , Γ 1 3 σ = Γ 1 σ 3 = − 1 2 B ( r ) g 3 σ , 1 , Γ 1 μ ν = [ A ′ ( r ) 2 B ( r ) 0 0 0 0 B ′ ( r ) 2 B ( r ) 0 0 0 0 − r B ( r ) 0 0 0 0 − r sin 2 θ B ( r ) ] \begin{align*} \Gamma^1{}_{\mu\sigma} &= \frac{1}{2 B(r)} (g_{1\mu,\sigma} + g_{1\sigma,\mu} - g_{\mu\sigma,1}), \\ \Gamma^1{}_{0\sigma} = \Gamma^1{}_{\sigma0} &= -\frac{1}{2 B(r)} g^{11} g_{0\sigma,1}, \\ \Gamma^1{}_{1\sigma} = \Gamma^1{}_{\sigma1} &= \frac{1}{2 B(r)} g_{11,\sigma}, \\ \Gamma^1{}_{2\sigma} = \Gamma^1{}_{\sigma2} &= -\frac{1}{2 B(r)} g_{2\sigma,1}, \\ \Gamma^1{}_{3\sigma} = \Gamma^1{}_{\sigma3} &= -\frac{1}{2 B(r)} g_{3\sigma,1}, \\ \Gamma^1{}_{\mu\nu} &= \begin{bmatrix} \frac{A'(r)}{2 B(r)} & 0 & 0 & 0 \\ 0 & \frac{B'(r)}{2 B(r)} & 0 & 0 \\ 0 & 0 & -\frac{r}{B(r)} & 0 \\ 0 & 0 & 0 & -\frac{r \sin^2 \theta}{B(r)} \end{bmatrix} \end{align*} Γ 1 μ σ Γ 1 0 σ = Γ 1 σ 0 Γ 1 1 σ = Γ 1 σ 1 Γ 1 2 σ = Γ 1 σ 2 Γ 1 3 σ = Γ 1 σ 3 Γ 1 μν = 2 B ( r ) 1 ( g 1 μ , σ + g 1 σ , μ − g μ σ , 1 ) , = − 2 B ( r ) 1 g 11 g 0 σ , 1 , = 2 B ( r ) 1 g 11 , σ , = − 2 B ( r ) 1 g 2 σ , 1 , = − 2 B ( r ) 1 g 3 σ , 1 , = 2 B ( r ) A ′ ( r ) 0 0 0 0 2 B ( r ) B ′ ( r ) 0 0 0 0 − B ( r ) r 0 0 0 0 − B ( r ) r s i n 2 θ for the θ \theta θ coordinate, we have:
Γ 2 μ σ = 1 2 r 2 ( g 2 μ , σ + g 2 σ , μ − g μ σ , 2 ) , Γ 2 0 σ = Γ 2 σ 0 = − 1 2 r 2 g 0 σ , 2 , Γ 2 1 σ = Γ 2 σ 1 = 1 2 r 2 ( g 2 σ , 1 − g 1 σ , 2 ) , = { − 1 2 r 2 g 11 , 2 σ = 1 , 1 2 r 2 g 22 , 1 σ = 2 , Γ 2 2 σ = Γ 2 σ 2 = 1 2 r 2 g 22 , σ , Γ 2 3 σ = Γ 2 σ 3 = − 1 2 r 2 g 3 σ , 2 , Γ 2 μ σ = [ 0 0 0 0 0 0 1 r 0 0 1 r 0 0 0 0 0 − sin θ cos θ ] \begin{align*} \Gamma^2{}_{\mu\sigma} &= \frac{1}{2 r^2} (g_{2\mu,\sigma} + g_{2\sigma,\mu} - g_{\mu\sigma,2}), \\ \Gamma^2{}_{0\sigma} = \Gamma^2{}_{\sigma0} &= -\frac{1}{2 r^2} g_{0\sigma,2}, \\ \Gamma^2{}_{1\sigma} = \Gamma^2{}_{\sigma1} &= \frac{1}{2 r^2} (g_{2\sigma,1} - g_{1\sigma,2}), \\ &= \begin{cases} -\frac{1}{2 r^2} g_{11,2} & \sigma = 1, \\ \frac{1}{2 r^2} g_{22,1} & \sigma = 2, \\ \end{cases} \\ \Gamma^2{}_{2\sigma} = \Gamma^2{}_{\sigma2} &= \frac{1}{2 r^2} g_{22,\sigma}, \\ \Gamma^2{}_{3\sigma} = \Gamma^2{}_{\sigma3} &= -\frac{1}{2 r^2} g_{3\sigma,2}, \\ \Gamma^2{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{r} & 0 \\ 0 & \frac{1}{r} & 0 & 0 \\ 0 & 0 & 0 & -\sin \theta \cos \theta \end{bmatrix} \end{align*} Γ 2 μ σ Γ 2 0 σ = Γ 2 σ 0 Γ 2 1 σ = Γ 2 σ 1 Γ 2 2 σ = Γ 2 σ 2 Γ 2 3 σ = Γ 2 σ 3 Γ 2 μ σ = 2 r 2 1 ( g 2 μ , σ + g 2 σ , μ − g μ σ , 2 ) , = − 2 r 2 1 g 0 σ , 2 , = 2 r 2 1 ( g 2 σ , 1 − g 1 σ , 2 ) , = { − 2 r 2 1 g 11 , 2 2 r 2 1 g 22 , 1 σ = 1 , σ = 2 , = 2 r 2 1 g 22 , σ , = − 2 r 2 1 g 3 σ , 2 , = 0 0 0 0 0 0 r 1 0 0 r 1 0 0 0 0 0 − sin θ cos θ and finally, for the coordinate ϕ \phi ϕ :
Γ 3 μ σ = 1 2 r 2 sin 2 θ ( g 3 μ , σ + g 3 σ , μ − g μ σ , 3 ) = 1 2 r 2 sin 2 θ ( g 3 μ , σ + g 3 σ , μ ) , Γ 3 0 σ = Γ 3 σ 0 = 0 , Γ 3 1 σ = Γ 3 σ 1 = 1 2 r 2 sin 2 θ g 3 σ , 1 , Γ 3 2 σ = Γ 3 σ 2 = 1 2 r 2 sin 2 θ g 3 σ , 2 Γ 3 3 σ = Γ 3 σ 3 = 1 2 r 2 sin 2 θ g 33 , σ Γ 3 μ σ = [ 0 0 0 0 0 0 0 1 r 0 0 0 cot θ 0 1 r cot θ 0 ] \begin{align*} \Gamma^3{}_{\mu\sigma} &= \frac{1}{2 r^2 \sin^2 \theta} (g_{3\mu,\sigma} + g_{3\sigma,\mu} - g_{\mu\sigma,3}) \\ &= \frac{1}{2 r^2 \sin^2 \theta} (g_{3\mu,\sigma} + g_{3\sigma,\mu}), \\ \Gamma^3{}_{0\sigma} = \Gamma^3{}_{\sigma0} &= 0, \\ \Gamma^3{}_{1\sigma} = \Gamma^3{}_{\sigma1} &= \frac{1}{2 r^2 \sin^2 \theta} g_{3\sigma,1}, \\ \Gamma^3{}_{2\sigma} = \Gamma^3{}_{\sigma2} &= \frac{1}{2 r^2 \sin^2 \theta} g_{3\sigma,2} \\ \Gamma^3{}_{3\sigma} = \Gamma^3{}_{\sigma3} &= \frac{1}{2 r^2 \sin^2 \theta} g_{33,\sigma} \\ \Gamma^3{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{r} \\ 0 & 0 & 0 & \cot \theta \\ 0 & \frac{1}{r} & \cot \theta & 0 \end{bmatrix} \end{align*} Γ 3 μ σ Γ 3 0 σ = Γ 3 σ 0 Γ 3 1 σ = Γ 3 σ 1 Γ 3 2 σ = Γ 3 σ 2 Γ 3 3 σ = Γ 3 σ 3 Γ 3 μ σ = 2 r 2 sin 2 θ 1 ( g 3 μ , σ + g 3 σ , μ − g μ σ , 3 ) = 2 r 2 sin 2 θ 1 ( g 3 μ , σ + g 3 σ , μ ) , = 0 , = 2 r 2 sin 2 θ 1 g 3 σ , 1 , = 2 r 2 sin 2 θ 1 g 3 σ , 2 = 2 r 2 sin 2 θ 1 g 33 , σ = 0 0 0 0 0 0 0 r 1 0 0 0 cot θ 0 r 1 cot θ 0 The Riemann tensor is equal to:
R ρ μ σ ν = Γ ρ ν μ , σ − Γ ρ σ μ , ν + Γ ρ σ λ Γ λ ν μ − Γ ρ ν λ Γ λ σ μ . R^{\rho}{}_{\mu\sigma\nu} = \Gamma^{\rho}{}_{\nu\mu,\sigma} - \Gamma^{\rho}{}_{\sigma\mu,\nu} + \Gamma^{\rho}{}_{\sigma\lambda} \Gamma^{\lambda}{}_{\nu\mu} - \Gamma^{\rho}{}_{\nu\lambda}\Gamma^{\lambda}{}_{\sigma\mu}. R ρ μ σ ν = Γ ρ νμ , σ − Γ ρ σ μ , ν + Γ ρ σλ Γ λ νμ − Γ ρ ν λ Γ λ σ μ . The Ricci tensor is equal to zero:
R μ ν = R ρ μ ρ ν = Γ ρ ν μ , ρ − Γ ρ ρ μ , ν + Γ ρ ρ λ Γ λ ν μ − Γ ρ ν λ Γ λ ρ μ = 0. R_{\mu\nu} = R^{\rho}{}_{\mu\rho\nu} = \Gamma^{\rho}{}_{\nu\mu,\rho} - \Gamma^{\rho}{}_{\rho\mu,\nu} + \Gamma^{\rho}{}_{\rho\lambda} \Gamma^{\lambda}{}_{\nu\mu} - \Gamma^{\rho}{}_{\nu\lambda} \Gamma^{\lambda}{}_{\rho\mu} = 0. R μν = R ρ μ ρ ν = Γ ρ νμ , ρ − Γ ρ ρ μ , ν + Γ ρ ρ λ Γ λ νμ − Γ ρ ν λ Γ λ ρ μ = 0. The R 00 R_{00} R 00 is equal to:
R 00 = Γ ρ 00 , ρ − Γ ρ ρ 0 , 0 + Γ ρ ρ λ Γ λ 00 − Γ ρ 0 λ Γ λ ρ 0 = Γ 1 00 , 1 + Γ ρ ρ 1 Γ 1 00 − Γ ρ 00 Γ 0 ρ 0 − Γ ρ 01 Γ 1 ρ 0 = Γ 1 00 , 1 + Γ 0 01 Γ 1 00 + Γ 1 11 Γ 1 00 + Γ 2 21 Γ 1 00 + Γ 3 31 Γ 1 00 − Γ 1 00 Γ 0 10 − Γ 0 01 Γ 1 00 = Γ 1 00 , 1 + Γ 1 11 Γ 1 00 + Γ 2 21 Γ 1 00 + Γ 3 31 Γ 1 00 − Γ 1 00 Γ 0 10 = 2 A ′ ′ ( r ) B ( r ) − 2 A ′ ( r ) B ′ ( r ) 4 ( B ( r ) ) 2 + B ′ ( r ) 2 B ( r ) A ′ ( r ) 2 B ( r ) + 1 r A ′ ( r ) 2 B ( r ) + 1 r A ′ ( r ) 2 B ( r ) − A ′ ( r ) 2 B ( r ) A ′ ( r ) 2 A ( r ) = A ′ ′ ( r ) B ( r ) 2 ( B ( r ) ) 2 − A ′ ( r ) B ′ ( r ) 2 ( B ( r ) ) 2 + A ′ ( r ) B ′ ( r ) 4 ( B ( r ) ) 2 + A ′ ( r ) r B ( r ) − ( A ′ ( r ) ) 2 4 A ( r ) B ( r ) = 0 , ⋅ 4 r A ( r ) ( B ( r ) ) 2 , 0 = 2 r A ( r ) A ′ ′ ( r ) B ( r ) − 2 r A ( r ) A ′ ( r ) B ′ ( r ) + r A ( r ) A ′ ( r ) B ′ ( r ) + 4 A ( r ) B ( r ) A ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 = 2 r A ( r ) A ′ ′ ( r ) B ( r ) − r A ( r ) A ′ ( r ) B ′ ( r ) + 4 A ( r ) B ( r ) A ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 . \begin{align*} R_{00} &= \Gamma^{\rho}{}_{00,\rho} - \Gamma^{\rho}{}_{\rho0,0} + \Gamma^{\rho}{}_{\rho\lambda} \Gamma^{\lambda}{}_{00} - \Gamma^{\rho}{}_{0\lambda} \Gamma^{\lambda}{}_{\rho0} \\ &= \Gamma^1{}_{00,1} + \Gamma^{\rho}{}_{\rho1} \Gamma^1{}_{00} - \Gamma^{\rho}{}_{00} \Gamma^0{}_{\rho0} - \Gamma^{\rho}{}_{01} \Gamma^1{}_{\rho0} \\ &= \Gamma^1{}_{00,1} + \Gamma^0{}_{01} \Gamma^1{}_{00} + \Gamma^1{}_{11} \Gamma^1{}_{00} + \Gamma^2{}_{21} \Gamma^1{}_{00} + \Gamma^3{}_{31} \Gamma^1{}_{00} - \Gamma^1{}_{00} \Gamma^0{}_{10} - \Gamma^0{}_{01} \Gamma^1{}_{00} \\ &= \Gamma^1{}_{00,1} + \Gamma^1{}_{11} \Gamma^1{}_{00} + \Gamma^2{}_{21} \Gamma^1{}_{00} + \Gamma^3{}_{31} \Gamma^1{}_{00} - \Gamma^1{}_{00} \Gamma^0{}_{10} \\ &= \frac{2 A''(r) B(r) - 2 A'(r) B'(r)}{4 (B(r))^2} + \frac{B'(r)}{2 B(r)} \frac{A'(r)}{2 B(r)} + \frac{1}{r} \frac{A'(r)}{2 B(r)} + \frac{1}{r} \frac{A'(r)}{2 B(r)} - \frac{A'(r)}{2 B(r)} \frac{A'(r)}{2 A(r)} \\ &= \frac{A''(r) B(r)}{2 (B(r))^2} - \frac{A'(r) B'(r)}{2 (B(r))^2} + \frac{A'(r) B'(r)}{4 (B(r))^2} + \frac{A'(r)}{r B(r)} - \frac{(A'(r))^2}{4 A(r) B(r)} \\ &= 0, \qquad \cdot 4r A(r) (B(r))^2, \\ 0 &= 2r A(r) A''(r) B(r) - 2r A(r) A'(r) B'(r) + r A(r) A'(r) B'(r) + 4 A(r) B(r) A'(r) - r B(r) (A'(r))^2 \\ &= 2r A(r) A''(r) B(r) - r A(r) A'(r) B'(r) + 4 A(r) B(r) A'(r) - r B(r) (A'(r))^2. \end{align*} R 00 0 = Γ ρ 00 , ρ − Γ ρ ρ 0 , 0 + Γ ρ ρ λ Γ λ 00 − Γ ρ 0 λ Γ λ ρ 0 = Γ 1 00 , 1 + Γ ρ ρ 1 Γ 1 00 − Γ ρ 00 Γ 0 ρ 0 − Γ ρ 01 Γ 1 ρ 0 = Γ 1 00 , 1 + Γ 0 01 Γ 1 00 + Γ 1 11 Γ 1 00 + Γ 2 21 Γ 1 00 + Γ 3 31 Γ 1 00 − Γ 1 00 Γ 0 10 − Γ 0 01 Γ 1 00 = Γ 1 00 , 1 + Γ 1 11 Γ 1 00 + Γ 2 21 Γ 1 00 + Γ 3 31 Γ 1 00 − Γ 1 00 Γ 0 10 = 4 ( B ( r ) ) 2 2 A ′′ ( r ) B ( r ) − 2 A ′ ( r ) B ′ ( r ) + 2 B ( r ) B ′ ( r ) 2 B ( r ) A ′ ( r ) + r 1 2 B ( r ) A ′ ( r ) + r 1 2 B ( r ) A ′ ( r ) − 2 B ( r ) A ′ ( r ) 2 A ( r ) A ′ ( r ) = 2 ( B ( r ) ) 2 A ′′ ( r ) B ( r ) − 2 ( B ( r ) ) 2 A ′ ( r ) B ′ ( r ) + 4 ( B ( r ) ) 2 A ′ ( r ) B ′ ( r ) + r B ( r ) A ′ ( r ) − 4 A ( r ) B ( r ) ( A ′ ( r ) ) 2 = 0 , ⋅ 4 r A ( r ) ( B ( r ) ) 2 , = 2 r A ( r ) A ′′ ( r ) B ( r ) − 2 r A ( r ) A ′ ( r ) B ′ ( r ) + r A ( r ) A ′ ( r ) B ′ ( r ) + 4 A ( r ) B ( r ) A ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 = 2 r A ( r ) A ′′ ( r ) B ( r ) − r A ( r ) A ′ ( r ) B ′ ( r ) + 4 A ( r ) B ( r ) A ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 . The R 11 R_{11} R 11 is equal to:
R 11 = Γ ρ 11 , ρ − Γ ρ ρ 1 , 1 + Γ ρ ρ λ Γ λ 11 − Γ ρ 1 λ Γ λ ρ 1 = Γ 1 11 , 1 − Γ 0 01 , 1 − Γ 1 11 , 1 − Γ 2 21 , 1 − Γ 3 31 , 1 + Γ ρ ρ 1 Γ 1 11 − Γ 0 1 λ Γ λ 01 − Γ 1 1 λ Γ λ 11 − Γ 2 1 λ Γ λ 21 − Γ 3 1 λ Γ λ 31 = − Γ 0 01 , 1 − Γ 2 21 , 1 − Γ 3 31 , 1 + Γ 0 01 Γ 1 11 + Γ 1 11 Γ 1 11 + Γ 2 21 Γ 1 11 + Γ 3 31 Γ 1 11 − Γ 0 10 Γ 0 01 − Γ 1 11 Γ 1 11 − Γ 2 12 Γ 2 21 − Γ 3 13 Γ 3 31 = − Γ 0 01 , 1 − Γ 2 21 , 1 − Γ 3 31 , 1 + Γ 0 01 Γ 1 11 + Γ 2 21 Γ 1 11 + Γ 3 31 Γ 1 11 − Γ 0 10 Γ 0 01 − Γ 2 12 Γ 2 21 − Γ 3 13 Γ 3 31 = − 2 A ( r ) A ′ ′ ( r ) − 2 ( A ′ ( r ) ) 2 4 ( A ( r ) ) 2 + 1 r 2 + 1 r 2 + A ′ ( r ) 2 A ( r ) B ′ ( r ) 2 B ( r ) + 1 r B ′ ( r ) 2 B ( r ) + 1 r B ′ ( r ) 2 B ( r ) − A ′ ( r ) 2 A ( r ) A ′ ( r ) 2 A ( r ) − 1 r 1 r − 1 r 1 r = − A ′ ′ ( r ) 2 A ( r ) + ( A ′ ( r ) ) 2 2 ( A ( r ) ) 2 + A ′ ( r ) B ′ ( r ) 4 A ( r ) B ( r ) + B ′ ( r ) r B ( r ) − ( A ′ ( r ) ) 2 4 ( A ( r ) ) 2 = − A ′ ′ ( r ) 2 A ( r ) + ( A ′ ( r ) ) 2 4 ( A ( r ) ) 2 + A ′ ( r ) B ′ ( r ) 4 A ( r ) B ( r ) + B ′ ( r ) r B ( r ) = 0 , ⋅ 4 r ( A ( r ) ) 2 B ( r ) , 0 = − 2 r A ( r ) B ( r ) A ′ ′ ( r ) + r B ( r ) ( A ′ ( r ) ) 2 + r A ( r ) A ′ ( r ) B ′ ( r ) + 4 ( A ( r ) ) 2 B ′ ( r ) . \begin{align*} R_{11} &= \Gamma^{\rho}{}_{11,\rho} - \Gamma^{\rho}{}_{\rho1,1} + \Gamma^{\rho}{}_{\rho\lambda} \Gamma^{\lambda}{}_{11} - \Gamma^{\rho}{}_{1\lambda} \Gamma^{\lambda}{}_{\rho1} \\ &= \Gamma^1{}_{11,1} - \Gamma^0{}_{01,1} - \Gamma^1{}_{11,1} - \Gamma^2{}_{21,1} - \Gamma^3{}_{31,1} + \Gamma^{\rho}{}_{\rho1} \Gamma^1{}_{11} \\ &- \Gamma^0{}_{1\lambda} \Gamma^{\lambda}{}_{01} - \Gamma^1{}_{1\lambda} \Gamma^{\lambda}{}_{11} - \Gamma^2{}_{1\lambda} \Gamma^{\lambda}{}_{21} - \Gamma^3{}_{1\lambda} \Gamma^{\lambda}{}_{31} \\ &= -\Gamma^0{}_{01,1} - \Gamma^2{}_{21,1} - \Gamma^3{}_{31,1} + \Gamma^0{}_{01} \Gamma^1{}_{11} + \Gamma^1{}_{11} \Gamma^1{}_{11} + \Gamma^2{}_{21} \Gamma^1{}_{11} + \Gamma^3{}_{31} \Gamma^1{}_{11} \\ &- \Gamma^0{}_{10} \Gamma^0{}_{01} - \Gamma^1{}_{11} \Gamma^1{}_{11} - \Gamma^2{}_{12} \Gamma^2{}_{21} - \Gamma^3{}_{13} \Gamma^3{}_{31} \\ &= -\Gamma^0{}_{01,1} - \Gamma^2{}_{21,1} - \Gamma^3{}_{31,1} + \Gamma^0{}_{01} \Gamma^1{}_{11} + \Gamma^2{}_{21} \Gamma^1{}_{11} + \Gamma^3{}_{31} \Gamma^1{}_{11} \\ &- \Gamma^0{}_{10} \Gamma^0{}_{01} - \Gamma^2{}_{12} \Gamma^2{}_{21} - \Gamma^3{}_{13} \Gamma^3{}_{31} \\ &= -\frac{2 A(r) A''(r) - 2 (A'(r))^2}{4 (A(r))^2} + \frac{1}{r^2} + \frac{1}{r^2} + \frac{A'(r)}{2 A(r)} \frac{B'(r)}{2 B(r)} + \frac{1}{r} \frac{B'(r)}{2 B(r)} + \frac{1}{r} \frac{B'(r)}{2 B(r)} \\ &- \frac{A'(r)}{2 A(r)} \frac{A'(r)}{2 A(r)} - \frac{1}{r} \frac{1}{r} - \frac{1}{r} \frac{1}{r} \\ &= -\frac{A''(r)}{2 A(r)} + \frac{(A'(r))^2}{2 (A(r))^2} + \frac{A'(r) B'(r)}{4 A(r) B(r)} + \frac{B'(r)}{r B(r)} - \frac{(A'(r))^2}{4 (A(r))^2} \\ &= -\frac{A''(r)}{2 A(r)} + \frac{(A'(r))^2}{4 (A(r))^2} + \frac{A'(r) B'(r)}{4 A(r) B(r)} + \frac{B'(r)}{r B(r)} \\ &= 0, \qquad \cdot 4r (A(r))^2 B(r), \\ 0 &= -2r A(r) B(r) A''(r) + r B(r) (A'(r))^2 + r A(r) A'(r) B'(r) + 4 (A(r))^2 B'(r). \end{align*} R 11 0 = Γ ρ 11 , ρ − Γ ρ ρ 1 , 1 + Γ ρ ρ λ Γ λ 11 − Γ ρ 1 λ Γ λ ρ 1 = Γ 1 11 , 1 − Γ 0 01 , 1 − Γ 1 11 , 1 − Γ 2 21 , 1 − Γ 3 31 , 1 + Γ ρ ρ 1 Γ 1 11 − Γ 0 1 λ Γ λ 01 − Γ 1 1 λ Γ λ 11 − Γ 2 1 λ Γ λ 21 − Γ 3 1 λ Γ λ 31 = − Γ 0 01 , 1 − Γ 2 21 , 1 − Γ 3 31 , 1 + Γ 0 01 Γ 1 11 + Γ 1 11 Γ 1 11 + Γ 2 21 Γ 1 11 + Γ 3 31 Γ 1 11 − Γ 0 10 Γ 0 01 − Γ 1 11 Γ 1 11 − Γ 2 12 Γ 2 21 − Γ 3 13 Γ 3 31 = − Γ 0 01 , 1 − Γ 2 21 , 1 − Γ 3 31 , 1 + Γ 0 01 Γ 1 11 + Γ 2 21 Γ 1 11 + Γ 3 31 Γ 1 11 − Γ 0 10 Γ 0 01 − Γ 2 12 Γ 2 21 − Γ 3 13 Γ 3 31 = − 4 ( A ( r ) ) 2 2 A ( r ) A ′′ ( r ) − 2 ( A ′ ( r ) ) 2 + r 2 1 + r 2 1 + 2 A ( r ) A ′ ( r ) 2 B ( r ) B ′ ( r ) + r 1 2 B ( r ) B ′ ( r ) + r 1 2 B ( r ) B ′ ( r ) − 2 A ( r ) A ′ ( r ) 2 A ( r ) A ′ ( r ) − r 1 r 1 − r 1 r 1 = − 2 A ( r ) A ′′ ( r ) + 2 ( A ( r ) ) 2 ( A ′ ( r ) ) 2 + 4 A ( r ) B ( r ) A ′ ( r ) B ′ ( r ) + r B ( r ) B ′ ( r ) − 4 ( A ( r ) ) 2 ( A ′ ( r ) ) 2 = − 2 A ( r ) A ′′ ( r ) + 4 ( A ( r ) ) 2 ( A ′ ( r ) ) 2 + 4 A ( r ) B ( r ) A ′ ( r ) B ′ ( r ) + r B ( r ) B ′ ( r ) = 0 , ⋅ 4 r ( A ( r ) ) 2 B ( r ) , = − 2 r A ( r ) B ( r ) A ′′ ( r ) + r B ( r ) ( A ′ ( r ) ) 2 + r A ( r ) A ′ ( r ) B ′ ( r ) + 4 ( A ( r ) ) 2 B ′ ( r ) . The R 22 R_{22} R 22 is equal to:
R 22 = Γ ρ 22 , ρ − Γ ρ ρ 2 , 2 + Γ ρ ρ λ Γ λ 22 − Γ ρ 2 λ Γ λ ρ 2 = Γ 1 22 , 1 − Γ 3 32 , 2 + Γ ρ ρ 1 Γ 1 22 − Γ 1 2 λ Γ λ 12 − Γ 2 2 λ Γ λ 22 − Γ 3 2 λ Γ λ 32 = Γ 1 22 , 1 − Γ 3 32 , 2 + Γ 0 01 Γ 1 22 + Γ 1 11 Γ 1 22 + Γ 2 21 Γ 1 22 + Γ 3 31 Γ 1 22 − Γ 1 22 Γ 2 12 − Γ 2 21 Γ 1 22 − Γ 3 23 Γ 3 32 = − B ( r ) − r B ′ ( r ) ( B ( r ) ) 2 + csc 2 θ + A ′ ( r ) 2 A ( r ) − r B ( r ) + B ′ ( r ) 2 B ( r ) − r B ( r ) + 1 r − r B ( r ) + 1 r − r B ( r ) − − r B ( r ) 1 r − 1 r − r B ( r ) − cot 2 θ = − 1 B ( r ) + r B ′ ( r ) ( B ( r ) ) 2 − r A ′ ( r ) 2 A ( r ) B ( r ) − r B ′ ( r ) 2 ( B ( r ) ) 2 − 2 B ( r ) + 2 B ( r ) + 1 = − 1 B ( r ) + r B ′ ( r ) 2 ( B ( r ) ) 2 − r A ′ ( r ) 2 A ( r ) B ( r ) + 1 = 0 , ⋅ 2 A ( r ) ( B ( r ) ) 2 , 0 = − 2 A ( r ) B ( r ) + r A ( r ) B ′ ( r ) − r B ( r ) A ′ ( r ) + 2 A ( r ) ( B ( r ) ) 2 \begin{align*} R_{22} &= \Gamma^{\rho}{}_{22,\rho} - \Gamma^{\rho}{}_{\rho2,2} + \Gamma^{\rho}{}_{\rho\lambda} \Gamma^{\lambda}{}_{22} - \Gamma^{\rho}{}_{2\lambda} \Gamma^{\lambda}{}_{\rho2} \\ &= \Gamma^1{}_{22,1} - \Gamma^3{}_{32,2} + \Gamma^{\rho}{}_{\rho1} \Gamma^1{}_{22} \\ &- \Gamma^1{}_{2\lambda} \Gamma^{\lambda}{}_{12} - \Gamma^2{}_{2\lambda} \Gamma^{\lambda}{}_{22} - \Gamma^3{}_{2\lambda} \Gamma^{\lambda}{}_{32} \\ &= \Gamma^1{}_{22,1} - \Gamma^3{}_{32,2} + \Gamma^0{}_{01} \Gamma^1{}_{22} + \Gamma^1{}_{11} \Gamma^1{}_{22} + \Gamma^2{}_{21} \Gamma^1{}_{22} + \Gamma^3{}_{31} \Gamma^1{}_{22} \\ &- \Gamma^1{}_{22} \Gamma^2{}_{12} - \Gamma^2{}_{21} \Gamma^1{}_{22} - \Gamma^3{}_{23} \Gamma^3{}_{32} \\ &= -\frac{B(r) - r B'(r)}{(B(r))^2} + \csc^2 \theta + \frac{A'(r)}{2 A(r)} \frac{-r}{B(r)} + \frac{B'(r)}{2 B(r)} \frac{-r}{B(r)} + \frac{1}{r} \frac{-r}{B(r)} + \frac{1}{r} \frac{-r}{B(r)} \\ &- \frac{-r}{B(r)} \frac{1}{r} - \frac{1}{r} \frac{-r}{B(r)} - \cot^2 \theta \\ &= -\frac{1}{B(r)} + \frac{r B'(r)}{(B(r))^2} - \frac{r A'(r)}{2 A(r) B(r)} - \frac{r B'(r)}{2 (B(r))^2} - \frac{2}{B(r)} + \frac{2}{B(r)} + 1 \\ &= -\frac{1}{B(r)} + \frac{r B'(r)}{2 (B(r))^2} - \frac{r A'(r)}{2 A(r) B(r)} + 1 \\ &= 0, \qquad \cdot 2 A(r) (B(r))^2, \\ 0 &= -2 A(r) B(r) + r A(r) B'(r) - r B(r) A'(r) + 2 A(r) (B(r))^2 \\ \end{align*} R 22 0 = Γ ρ 22 , ρ − Γ ρ ρ 2 , 2 + Γ ρ ρ λ Γ λ 22 − Γ ρ 2 λ Γ λ ρ 2 = Γ 1 22 , 1 − Γ 3 32 , 2 + Γ ρ ρ 1 Γ 1 22 − Γ 1 2 λ Γ λ 12 − Γ 2 2 λ Γ λ 22 − Γ 3 2 λ Γ λ 32 = Γ 1 22 , 1 − Γ 3 32 , 2 + Γ 0 01 Γ 1 22 + Γ 1 11 Γ 1 22 + Γ 2 21 Γ 1 22 + Γ 3 31 Γ 1 22 − Γ 1 22 Γ 2 12 − Γ 2 21 Γ 1 22 − Γ 3 23 Γ 3 32 = − ( B ( r ) ) 2 B ( r ) − r B ′ ( r ) + csc 2 θ + 2 A ( r ) A ′ ( r ) B ( r ) − r + 2 B ( r ) B ′ ( r ) B ( r ) − r + r 1 B ( r ) − r + r 1 B ( r ) − r − B ( r ) − r r 1 − r 1 B ( r ) − r − cot 2 θ = − B ( r ) 1 + ( B ( r ) ) 2 r B ′ ( r ) − 2 A ( r ) B ( r ) r A ′ ( r ) − 2 ( B ( r ) ) 2 r B ′ ( r ) − B ( r ) 2 + B ( r ) 2 + 1 = − B ( r ) 1 + 2 ( B ( r ) ) 2 r B ′ ( r ) − 2 A ( r ) B ( r ) r A ′ ( r ) + 1 = 0 , ⋅ 2 A ( r ) ( B ( r ) ) 2 , = − 2 A ( r ) B ( r ) + r A ( r ) B ′ ( r ) − r B ( r ) A ′ ( r ) + 2 A ( r ) ( B ( r ) ) 2 R 00 + R 11 R_{00} + R_{11} R 00 + R 11 is equal to:
R 00 + R 11 = 2 r A ( r ) A ′ ′ ( r ) B ( r ) − r A ( r ) A ′ ( r ) B ′ ( r ) + 4 A ( r ) B ( r ) A ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 + ( − 2 r A ( r ) B ( r ) A ′ ′ ( r ) ) + r B ( r ) ( A ′ ( r ) ) 2 + r A ( r ) A ′ ( r ) B ′ ( r ) + 4 ( A ( r ) ) 2 B ′ ( r ) = 2 r A ( r ) A ′ ′ ( r ) B ( r ) − r A ( r ) A ′ ( r ) B ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 + 4 A ( r ) B ( r ) A ′ ( r ) + ( − 2 r A ( r ) A ′ ′ ( r ) B ( r ) ) + r A ( r ) A ′ ( r ) B ′ ( r ) + r B ( r ) ( A ′ ( r ) ) 2 + 4 ( A ( r ) ) 2 B ′ ( r ) = 4 A ( r ) B ( r ) A ′ ( r ) + 4 ( A ( r ) ) 2 B ′ ( r ) = 0 , 0 = B ( r ) A ′ ( r ) + A ( r ) B ′ ( r ) = ( A ( r ) B ( r ) ) ′ , \begin{align*} R_{00} + R_{11} &= 2r A(r) A''(r) B(r) - r A(r) A'(r) B'(r) + 4 A(r) B(r) A'(r) - r B(r) (A'(r))^2 \\ &+ (-2r A(r) B(r) A''(r)) + r B(r) (A'(r))^2 + r A(r) A'(r) B'(r) + 4 (A(r))^2 B'(r) \\ &= 2r A(r) A''(r) B(r) - r A(r) A'(r) B'(r) - r B(r) (A'(r))^2 + 4 A(r) B(r) A'(r) \\ &+ (-2r A(r) A''(r) B(r)) + r A(r) A'(r) B'(r) + r B(r) (A'(r))^2 + 4 (A(r))^2 B'(r) \\ &= 4 A(r) B(r) A'(r) + 4 (A(r))^2 B'(r) \\ &= 0, \\ 0 &= B(r) A'(r) + A(r) B'(r) = (A(r) B(r))', \end{align*} R 00 + R 11 0 = 2 r A ( r ) A ′′ ( r ) B ( r ) − r A ( r ) A ′ ( r ) B ′ ( r ) + 4 A ( r ) B ( r ) A ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 + ( − 2 r A ( r ) B ( r ) A ′′ ( r )) + r B ( r ) ( A ′ ( r ) ) 2 + r A ( r ) A ′ ( r ) B ′ ( r ) + 4 ( A ( r ) ) 2 B ′ ( r ) = 2 r A ( r ) A ′′ ( r ) B ( r ) − r A ( r ) A ′ ( r ) B ′ ( r ) − r B ( r ) ( A ′ ( r ) ) 2 + 4 A ( r ) B ( r ) A ′ ( r ) + ( − 2 r A ( r ) A ′′ ( r ) B ( r )) + r A ( r ) A ′ ( r ) B ′ ( r ) + r B ( r ) ( A ′ ( r ) ) 2 + 4 ( A ( r ) ) 2 B ′ ( r ) = 4 A ( r ) B ( r ) A ′ ( r ) + 4 ( A ( r ) ) 2 B ′ ( r ) = 0 , = B ( r ) A ′ ( r ) + A ( r ) B ′ ( r ) = ( A ( r ) B ( r ) ) ′ , implying:
A ( r ) B ( r ) = C , A(r) B(r) = C, A ( r ) B ( r ) = C , where C C C is an arbitrary constant. As r → ∞ r \to \infty r → ∞ , − A ( r ) → − 1 ⟺ A ( r ) → 1 -A(r) \to -1 \iff A(r) \to 1 − A ( r ) → − 1 ⟺ A ( r ) → 1 and B ( r ) → 1 B(r) \to 1 B ( r ) → 1 since C C C is constant everywhere, the following applies:
lim r → ∞ A ( r ) B ( r ) = 1 ⋅ 1 = 1 , A ( r ) B ( r ) = 1 , B ( r ) = 1 A ( r ) , B ′ ( r ) = − A ′ ( r ) ( A ( r ) ) 2 . \begin{align*} \lim_{r \to \infty} A(r) B(r) &= 1 \cdot 1 = 1, \\ A(r) B(r) &= 1, \\ B(r) &= \frac{1}{A(r)}, \\ B'(r) &= -\frac{A'(r)}{(A(r))^2}. \end{align*} r → ∞ lim A ( r ) B ( r ) A ( r ) B ( r ) B ( r ) B ′ ( r ) = 1 ⋅ 1 = 1 , = 1 , = A ( r ) 1 , = − ( A ( r ) ) 2 A ′ ( r ) . Substituting into R 22 R_{22} R 22 :
0 = − 2 A ( r ) B ( r ) + r A ( r ) B ′ ( r ) − r B ( r ) A ′ ( r ) + 2 A ( r ) ( B ( r ) ) 2 = − 2 A ( r ) 1 A ( r ) − r A ( r ) A ′ ( r ) ( A ( r ) ) 2 − r 1 A ( r ) A ′ ( r ) + 2 A ( r ) ( 1 A ( r ) ) 2 = − 2 − r A ′ ( r ) A ( r ) − r A ′ ( r ) A ( r ) + 2 1 A ( r ) = − 2 − 2 r A ′ ( r ) A ( r ) + 2 1 A ( r ) , 0 = − 2 A ( r ) − 2 r A ′ ( r ) + 2 , 0 = − A ( r ) − r A ′ ( r ) + 1 , r A ′ ( r ) = 1 − A ( r ) , r d A d r = 1 − A ( r ) , 1 r d r d A = 1 1 − A ( r ) , d r r = d A 1 − A ( r ) , ∫ d r r = − ∫ d A A ( r ) − 1 , ln r = − ln ( A ( r ) − 1 ) + C 0 , ln r = ln ( 1 A ( r ) − 1 ) + ln C , ln r = ln ( C A ( r ) − 1 ) , A ( r ) − 1 = C r , A ( r ) = 1 + C r = r + C r , A ′ ( r ) = − C r 2 , B ( r ) = ( 1 + C r ) − 1 = r r + C , B ′ ( r ) = C ( r + C ) 2 , \begin{align*} 0 &= -2 A(r) B(r) + r A(r) B'(r) - r B(r) A'(r) + 2 A(r) (B(r))^2 \\ &= -2 A(r) \frac{1}{A(r)} - r A(r) \frac{A'(r)}{(A(r))^2} - r \frac{1}{A(r)} A'(r) + 2 A(r) \left(\frac{1}{A(r)}\right)^2 \\ &= -2 - r \frac{A'(r)}{A(r)} - r \frac{A'(r)}{A(r)} + 2 \frac{1}{A(r)} \\ &= -2 - 2r \frac{A'(r)}{A(r)} + 2 \frac{1}{A(r)}, \\ 0 &= -2 A(r) - 2r A'(r) + 2, \\ 0 &= -A(r) - r A'(r) + 1, \\ r A'(r) &= 1 - A(r), \\ r \frac{dA}{dr} &= 1 - A(r), \\ \frac{1}{r} \frac{dr}{dA} &= \frac{1}{1 - A(r)}, \\ \frac{dr}{r} &= \frac{dA}{1 - A(r)}, \\ \int \frac{dr}{r} &= -\int \frac{dA}{A(r) - 1}, \\ \ln r &= -\ln (A(r) - 1) + C_0, \\ \ln r &= \ln \left(\frac{1}{A(r) - 1}\right) + \ln C, \\ \ln r &= \ln \left(\frac{C}{A(r) - 1}\right), \\ A(r) - 1 &= \frac{C}{r}, \\ A(r) &= 1 + \frac{C}{r} \\ &= \frac{r + C}{r}, \\ A'(r) &= -\frac{C}{r^2}, \\ B(r) &= \left(1 + \frac{C}{r}\right)^{-1} \\ &= \frac{r}{r + C}, \\ B'(r) &= \frac{C}{(r + C)^2}, \\ \end{align*} 0 0 0 r A ′ ( r ) r d r d A r 1 d A d r r d r ∫ r d r ln r ln r ln r A ( r ) − 1 A ( r ) A ′ ( r ) B ( r ) B ′ ( r ) = − 2 A ( r ) B ( r ) + r A ( r ) B ′ ( r ) − r B ( r ) A ′ ( r ) + 2 A ( r ) ( B ( r ) ) 2 = − 2 A ( r ) A ( r ) 1 − r A ( r ) ( A ( r ) ) 2 A ′ ( r ) − r A ( r ) 1 A ′ ( r ) + 2 A ( r ) ( A ( r ) 1 ) 2 = − 2 − r A ( r ) A ′ ( r ) − r A ( r ) A ′ ( r ) + 2 A ( r ) 1 = − 2 − 2 r A ( r ) A ′ ( r ) + 2 A ( r ) 1 , = − 2 A ( r ) − 2 r A ′ ( r ) + 2 , = − A ( r ) − r A ′ ( r ) + 1 , = 1 − A ( r ) , = 1 − A ( r ) , = 1 − A ( r ) 1 , = 1 − A ( r ) d A , = − ∫ A ( r ) − 1 d A , = − ln ( A ( r ) − 1 ) + C 0 , = ln ( A ( r ) − 1 1 ) + ln C , = ln ( A ( r ) − 1 C ) , = r C , = 1 + r C = r r + C , = − r 2 C , = ( 1 + r C ) − 1 = r + C r , = ( r + C ) 2 C , The metric now looks like this:
g μ ν = [ − ( 1 + C r ) 0 0 0 0 ( 1 + C r ) − 1 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ ] g_{\mu\nu} = \begin{bmatrix} -\left(1 + \frac{C}{r}\right) & 0 & 0 & 0 \\ 0 & \left(1 + \frac{C}{r}\right)^{-1} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{bmatrix} g μν = − ( 1 + r C ) 0 0 0 0 ( 1 + r C ) − 1 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ and the Christoffel symbols like this:
Γ 0 μ ν = [ 0 − C 2 r ( r + C ) 0 0 − C 2 r ( r + C ) 0 0 0 0 0 0 0 0 0 0 0 ] Γ 1 μ ν = [ − C ( r + C ) 2 r 3 0 0 0 0 C 2 r ( r + C ) 0 0 0 0 − ( r + C ) 0 0 0 0 − sin 2 θ ( r + C ) ] Γ 2 μ σ = [ 0 0 0 0 0 0 1 r 0 0 1 r 0 0 0 0 0 − sin θ cos θ ] Γ 3 μ σ = [ 0 0 0 0 0 0 0 1 r 0 0 0 cot θ 0 1 r cot θ 0 ] \begin{align*} \\ \Gamma^0{}_{\mu\nu} &= \begin{bmatrix} 0 & -\frac{C}{2r (r + C)} & 0 & 0 \\ -\frac{C}{2r (r + C)} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ \Gamma^1{}_{\mu\nu} &= \begin{bmatrix} -\frac{C (r + C)}{2r^3} & 0 & 0 & 0 \\ 0 & \frac{C}{2 r (r + C)} & 0 & 0 \\ 0 & 0 & -(r + C) & 0 \\ 0 & 0 & 0 & -\sin^2 \theta (r + C) \end{bmatrix} \\ \Gamma^2{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{r} & 0 \\ 0 & \frac{1}{r} & 0 & 0 \\ 0 & 0 & 0 & -\sin \theta \cos \theta \end{bmatrix} \\ \Gamma^3{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{r} \\ 0 & 0 & 0 & \cot \theta \\ 0 & \frac{1}{r} & \cot \theta & 0 \end{bmatrix} \end{align*} Γ 0 μν Γ 1 μν Γ 2 μ σ Γ 3 μ σ = 0 − 2 r ( r + C ) C 0 0 − 2 r ( r + C ) C 0 0 0 0 0 0 0 0 0 0 0 = − 2 r 3 C ( r + C ) 0 0 0 0 2 r ( r + C ) C 0 0 0 0 − ( r + C ) 0 0 0 0 − sin 2 θ ( r + C ) = 0 0 0 0 0 0 r 1 0 0 r 1 0 0 0 0 0 − sin θ cos θ = 0 0 0 0 0 0 0 r 1 0 0 0 cot θ 0 r 1 cot θ 0 The geodesic equations are given by:
d 2 x σ d τ 2 + Γ σ μ ν d x μ d τ d x ν d τ = 0. \frac{d^2 x^{\sigma}}{d\tau^2} + \Gamma^{\sigma}{}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0. d τ 2 d 2 x σ + Γ σ μν d τ d x μ d τ d x ν = 0. We will make it match to Newtonian gravity:
τ → t , d t d τ → 1 , d x i d τ → 0 , g μ ν → η μ ν + h μ ν , \begin{align*} \tau &\to t, \\ \frac{dt}{d\tau} &\to 1, \\ \frac{dx^i}{d\tau} &\to 0, \\ g_{\mu\nu} &\to \eta_{\mu\nu} + h_{\mu\nu}, \end{align*} τ d τ d t d τ d x i g μν → t , → 1 , → 0 , → η μν + h μν , where h μ ν h_{\mu\nu} h μν is some error due to the weak gravity and η μ ν \eta_{\mu\nu} η μν is the Minkowski metric in cartesian coordinates:
η μ ν = [ − 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] h μ ν → 0. \begin{align*} \eta_{\mu\nu} &= \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ h_{\mu\nu} &\to 0. \end{align*} η μν h μν = − 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 → 0. Substituting into the geodesic equation (considering only space coordinates - d 2 t d t 2 = 0 \frac{d^2 t}{dt^2} = 0 d t 2 d 2 t = 0 ):
d 2 x i d t 2 + Γ i 00 ( d t d t ) 2 = 0 , d 2 x i d t 2 = − Γ i 00 , \begin{align*} \frac{d^2 x^i}{dt^2} + \Gamma^i{}_{00} \left(\frac{dt}{dt}\right)^2 &= 0, \\ \frac{d^2 x^i}{dt^2} &= -\Gamma^i{}_{00}, \end{align*} d t 2 d 2 x i + Γ i 00 ( d t d t ) 2 d t 2 d 2 x i = 0 , = − Γ i 00 , d 2 x i d t 2 \frac{d^2 x^i}{dt^2} d t 2 d 2 x i should match Newtonian gravitation:
d 2 x i d t 2 = − ∂ φ ∂ x i , \frac{d^2 x^i}{dt^2} = -\frac{\partial \varphi}{\partial x^i}, d t 2 d 2 x i = − ∂ x i ∂ φ , implying:
Γ i 00 = ∂ φ ∂ x i . \Gamma^i{}_{00} = \frac{\partial \varphi}{\partial x^i}. Γ i 00 = ∂ x i ∂ φ . Solving for Γ i 00 \Gamma^i{}_{00} Γ i 00 :
Γ i 00 = 1 2 g i κ ( g κ 0 , 0 + g κ 0 , 0 − g 00 , κ ) the metric is diagonal and time independent = − 1 2 g i i g 00 , i = − 1 2 ( η i i + h i i ) ( η 00 , i + h 00 , i ) = − 1 2 h 00 , i = − 1 2 ∂ h 00 ∂ x i = ∂ φ ∂ x i \begin{align*} \Gamma^i{}_{00} &= \frac{1}{2} g^{i\kappa} (g_{\kappa0,0} + g_{\kappa0,0} - g_{00,\kappa}) \qquad \textrm{the metric is diagonal and time independent} \\ &= -\frac{1}{2} g^{ii} g_{00,i} \\ &= -\frac{1}{2} (\eta^{ii} + h^{ii}) (\eta_{00,i} + h_{00,i}) \\ &= -\frac{1}{2} h_{00,i} \\ &= -\frac{1}{2} \frac{\partial h_{00}}{\partial x^i} = \frac{\partial \varphi}{\partial x^i} \end{align*} Γ i 00 = 2 1 g iκ ( g κ 0 , 0 + g κ 0 , 0 − g 00 , κ ) the metric is diagonal and time independent = − 2 1 g ii g 00 , i = − 2 1 ( η ii + h ii ) ( η 00 , i + h 00 , i ) = − 2 1 h 00 , i = − 2 1 ∂ x i ∂ h 00 = ∂ x i ∂ φ Solving for h 00 h_{00} h 00 :
− 1 2 ∂ h 00 ∂ x i = ∂ φ ∂ x i , ∂ h 00 ∂ x i = − 2 ∂ φ ∂ x i , ∂ h 00 ∂ x i = − 2 ∂ φ ∂ x i , h 00 = − 2 φ + φ 0 , h 00 = 2 M r + φ 0 , \begin{align*} -\frac{1}{2} \frac{\partial h_{00}}{\partial x^i} &= \frac{\partial \varphi}{\partial x^i}, \\ \frac{\partial h_{00}}{\partial x^i} &= -2 \frac{\partial \varphi}{\partial x^i}, \\ \frac{\partial h_{00}}{\partial x^i} &= -2 \frac{\partial \varphi}{\partial x^i}, \\ h_{00} &= -2 \varphi + \varphi_0, \\ h_{00} &= \frac{2M}{r} + \varphi_0, \end{align*} − 2 1 ∂ x i ∂ h 00 ∂ x i ∂ h 00 ∂ x i ∂ h 00 h 00 h 00 = ∂ x i ∂ φ , = − 2 ∂ x i ∂ φ , = − 2 ∂ x i ∂ φ , = − 2 φ + φ 0 , = r 2 M + φ 0 , The g 00 g_{00} g 00 is equal to:
g 00 = − 1 + 2 r + φ 0 . g_{00} = -1 + \frac{2}{r} + \varphi_0. g 00 = − 1 + r 2 + φ 0 . As r → ∞ r \to \infty r → ∞ , the g 00 g_{00} g 00 component should reduce to − 1 -1 − 1 :
lim r → ∞ g 00 = lim r → ∞ − 1 + 2 M r + φ 0 = − 1 + φ 0 = − 1 , \begin{align*} \lim_{r \to \infty} g_{00} &= \lim_{r \to \infty} -1 + \frac{2M}{r} + \varphi_0 \\ &= -1 + \varphi_0 = -1, \end{align*} r → ∞ lim g 00 = r → ∞ lim − 1 + r 2 M + φ 0 = − 1 + φ 0 = − 1 , implying φ 0 = 0 \varphi_0 = 0 φ 0 = 0 . The g 00 g_{00} g 00 component is equal to:
g 00 = − 1 + 2 M r = − ( 1 − 2 M r ) , \begin{align*} g_{00} &= -1 + \frac{2M}{r} \\ &= -\left(1 - \frac{2M}{r}\right), \end{align*} g 00 = − 1 + r 2 M = − ( 1 − r 2 M ) , g 00 g_{00} g 00 is the same in cartesian and spherical coordinates.
Solving for C C C :
g 00 = − ( 1 − 2 M r ) = − ( 1 + C r ) , 2 M r = − C r , C = − 2 M = − r s , \begin{align*} g_{00} = -\left(1 - \frac{2M}{r}\right) &= -\left(1 + \frac{C}{r}\right), \\ \frac{2M}{r} &= -\frac{C}{r}, \\ C &= -2M = -r_s, \end{align*} g 00 = − ( 1 − r 2 M ) r 2 M C = − ( 1 + r C ) , = − r C , = − 2 M = − r s , r s = C = 2 M r_s = C = 2M r s = C = 2 M is called the Schwarzschild radius. It is the radius of the event horizon of a black hole. In SI units this is equal to:
r s = 2 G M c 2 . r_s = \frac{2GM}{c^2}. r s = c 2 2 GM . I will modify the units such that M = 1 M = 1 M = 1 - unit converter . The metric and christoffel symbols are equal to:
g μ ν = [ − ( 1 − r s r ) 0 0 0 0 ( 1 − r s r ) − 1 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ ] Γ 0 μ ν = [ 0 r s 2 r ( r − r s ) 0 0 r s 2 r ( r − r s ) 0 0 0 0 0 0 0 0 0 0 0 ] Γ 1 μ ν = [ r s ( r − r s ) 2 r 3 0 0 0 0 − r s 2 r ( r − r s ) 0 0 0 0 − ( r − r s ) 0 0 0 0 − sin 2 θ ( r − r s ) ] Γ 2 μ σ = [ 0 0 0 0 0 0 1 r 0 0 1 r 0 0 0 0 0 − sin θ cos θ ] Γ 3 μ σ = [ 0 0 0 0 0 0 0 1 r 0 0 0 cot θ 0 1 r cot θ 0 ] \begin{align*} \\ g_{\mu\nu} &= \begin{bmatrix} -\left(1 - \frac{r_s}{r}\right) & 0 & 0 & 0 \\ 0 & \left(1 - \frac{r_s}{r}\right)^{-1} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2 \theta \end{bmatrix} \\ \Gamma^0{}_{\mu\nu} &= \begin{bmatrix} 0 & \frac{r_s}{2r (r - r_s)} & 0 & 0 \\ \frac{r_s}{2r (r - r_s)} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ \Gamma^1{}_{\mu\nu} &= \begin{bmatrix} \frac{r_s (r - r_s)}{2r^3} & 0 & 0 & 0 \\ 0 & -\frac{r_s}{2 r (r - r_s)} & 0 & 0 \\ 0 & 0 & -(r - r_s) & 0 \\ 0 & 0 & 0 & -\sin^2 \theta (r - r_s) \end{bmatrix} \\ \Gamma^2{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{r} & 0 \\ 0 & \frac{1}{r} & 0 & 0 \\ 0 & 0 & 0 & -\sin \theta \cos \theta \end{bmatrix} \\ \Gamma^3{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{r} \\ 0 & 0 & 0 & \cot \theta \\ 0 & \frac{1}{r} & \cot \theta & 0 \end{bmatrix} \end{align*} g μν Γ 0 μν Γ 1 μν Γ 2 μ σ Γ 3 μ σ = − ( 1 − r r s ) 0 0 0 0 ( 1 − r r s ) − 1 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ = 0 2 r ( r − r s ) r s 0 0 2 r ( r − r s ) r s 0 0 0 0 0 0 0 0 0 0 0 = 2 r 3 r s ( r − r s ) 0 0 0 0 − 2 r ( r − r s ) r s 0 0 0 0 − ( r − r s ) 0 0 0 0 − sin 2 θ ( r − r s ) = 0 0 0 0 0 0 r 1 0 0 r 1 0 0 0 0 0 − sin θ cos θ = 0 0 0 0 0 0 0 r 1 0 0 0 cot θ 0 r 1 cot θ 0 We can simplify the geodesic equations by rotating the coordinate system such that θ \theta θ is constant at π 2 \frac{\pi}{2} 2 π (d θ d λ = d 2 θ d λ 2 = d θ = 0 \frac{d\theta}{d\lambda} = \frac{d^2\theta}{d\lambda^2} = d\theta = 0 d λ d θ = d λ 2 d 2 θ = d θ = 0 ). The metric and Christoffel symbols simplify to:
d s 2 = − ( 1 − r s r ) d t 2 + ( 1 − r s r ) − 1 d r 2 + r 2 d ϕ 2 , Γ 0 μ ν = [ 0 r s 2 r ( r − r s ) 0 0 r s 2 r ( r − r s ) 0 0 0 0 0 0 0 0 0 0 0 ] Γ 1 μ ν = [ r s ( r − r s ) 2 r 3 0 0 0 0 − r s 2 r ( r − r s ) 0 0 0 0 − ( r − r s ) 0 0 0 0 − ( r − r s ) ] Γ 2 μ σ = [ 0 0 0 0 0 0 1 r 0 0 1 r 0 0 0 0 0 0 ] Γ 3 μ σ = [ 0 0 0 0 0 0 0 1 r 0 0 0 0 0 1 r 0 0 ] \begin{align*} ds^2 &= -\left(1 - \frac{r_s}{r}\right) dt^2 + \left(1 - \frac{r_s}{r}\right)^{-1} dr^2 + r^2 d\phi^2, \\ \Gamma^0{}_{\mu\nu} &= \begin{bmatrix} 0 & \frac{r_s}{2r (r - r_s)} & 0 & 0 \\ \frac{r_s}{2r (r - r_s)} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ \Gamma^1{}_{\mu\nu} &= \begin{bmatrix} \frac{r_s (r - r_s)}{2r^3} & 0 & 0 & 0 \\ 0 & -\frac{r_s}{2 r (r - r_s)} & 0 & 0 \\ 0 & 0 & -(r - r_s) & 0 \\ 0 & 0 & 0 & -(r - r_s) \end{bmatrix} \\ \Gamma^2{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{r} & 0 \\ 0 & \frac{1}{r} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ \Gamma^3{}_{\mu\sigma} &= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{r} \\ 0 & 0 & 0 & 0 \\ 0 & \frac{1}{r} & 0 & 0 \end{bmatrix} \end{align*} d s 2 Γ 0 μν Γ 1 μν Γ 2 μ σ Γ 3 μ σ = − ( 1 − r r s ) d t 2 + ( 1 − r r s ) − 1 d r 2 + r 2 d ϕ 2 , = 0 2 r ( r − r s ) r s 0 0 2 r ( r − r s ) r s 0 0 0 0 0 0 0 0 0 0 0 = 2 r 3 r s ( r − r s ) 0 0 0 0 − 2 r ( r − r s ) r s 0 0 0 0 − ( r − r s ) 0 0 0 0 − ( r − r s ) = 0 0 0 0 0 0 r 1 0 0 r 1 0 0 0 0 0 0 = 0 0 0 0 0 0 0 r 1 0 0 0 0 0 r 1 0 0 The general geodesic equations are as follows:
d 2 x σ d λ 2 + Γ σ μ ν d x μ d λ d x ν d λ = 0. \frac{d^2 x^{\sigma}}{d\lambda^2} + \Gamma^{\sigma}{}_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0. d λ 2 d 2 x σ + Γ σ μν d λ d x μ d λ d x ν = 0. Substituting into equation for σ = 2 \sigma = 2 σ = 2 :
d 2 θ d λ 2 + Γ 2 μ ν d x μ d λ d x ν d λ = 0 , 2 r d r d λ d θ d λ = 0 , 2 r d r d λ ⋅ 0 = 0 , 0 = 0 , \begin{align*} \frac{d^2 \theta}{d\lambda^2} + \Gamma^2{}_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} &= 0, \\ \frac{2}{r} \frac{dr}{d\lambda} \frac{d\theta}{d\lambda} &= 0, \\ \frac{2}{r} \frac{dr}{d\lambda} \cdot 0 &= 0, \\ 0 &= 0, \end{align*} d λ 2 d 2 θ + Γ 2 μν d λ d x μ d λ d x ν r 2 d λ d r d λ d θ r 2 d λ d r ⋅ 0 0 = 0 , = 0 , = 0 , = 0 , meaning it is a valid solution. The geodesic equations are in the form:
d 2 t d λ 2 + r s r ( r − r s ) d t d λ d r d λ = 0 , d 2 r d λ 2 + r s ( r − r s ) 2 r 3 ( d t d λ ) 2 − r s 2 r ( r − r s ) ( d r d λ ) 2 − ( r − r s ) ( d ϕ d λ ) 2 = 0 , d 2 ϕ d λ 2 + 2 r d r d λ d ϕ d λ = 0 , \begin{align*} \frac{d^2 t}{d\lambda^2} + \frac{r_s}{r(r - r_s)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} = 0, \\ \frac{d^2 r}{d\lambda^2} + \frac{r_s(r - r_s)}{2r^3} \left(\frac{dt}{d\lambda}\right)^2 - \frac{r_s}{2r(r - r_s)} \left(\frac{dr}{d\lambda}\right)^2 - (r - r_s) \left(\frac{d\phi}{d\lambda}\right)^2 = 0, \\ \frac{d^2 \phi}{d\lambda^2} + \frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda} = 0, \end{align*} d λ 2 d 2 t + r ( r − r s ) r s d λ d t d λ d r = 0 , d λ 2 d 2 r + 2 r 3 r s ( r − r s ) ( d λ d t ) 2 − 2 r ( r − r s ) r s ( d λ d r ) 2 − ( r − r s ) ( d λ d ϕ ) 2 = 0 , d λ 2 d 2 ϕ + r 2 d λ d r d λ d ϕ = 0 , or when using the geometrized units where M = 1 M = 1 M = 1 (r s = 2 r_s = 2 r s = 2 ):
d 2 t d λ 2 + 2 r ( r − 2 ) d t d λ d r d λ = 0 , d 2 r d λ 2 + r − 2 r 3 ( d t d λ ) 2 − 1 r ( r − 2 ) ( d r d λ ) 2 − ( r − 2 ) ( d ϕ d λ ) 2 = 0 , d 2 ϕ d λ 2 + 2 r d r d λ d ϕ d λ = 0 , \begin{align*} \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \\ \frac{d^2 r}{d\lambda^2} + \frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 - \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 - (r - 2) \left(\frac{d\phi}{d\lambda}\right)^2 &= 0, \\ \frac{d^2 \phi}{d\lambda^2} + \frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda} &= 0, \end{align*} d λ 2 d 2 t + r ( r − 2 ) 2 d λ d t d λ d r d λ 2 d 2 r + r 3 r − 2 ( d λ d t ) 2 − r ( r − 2 ) 1 ( d λ d r ) 2 − ( r − 2 ) ( d λ d ϕ ) 2 d λ 2 d 2 ϕ + r 2 d λ d r d λ d ϕ = 0 , = 0 , = 0 , and the metric:
d s 2 = − ( 1 − 2 r ) d t 2 + ( 1 − 2 r ) − 1 d r 2 + r 2 d ϕ 2 . ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2. d s 2 = − ( 1 − r 2 ) d t 2 + ( 1 − r 2 ) − 1 d r 2 + r 2 d ϕ 2 .