Back

Geodesics Simulation

The metric and geodesic equations are in the form:

ds2=(12r)dt2+(12r)1dr2+r2dϕ2,d2tdλ2+2r(r2)dtdλdrdλ=0,d2rdλ2+r2r3(dtdλ)21r(r2)(drdλ)2(r2)(dϕdλ)2=0,d2ϕdλ2+2rdrdλdϕdλ=0, \begin{align*} ds^2 = -\left(1 - \frac{2}{r}\right) dt^2 + \left(1 - \frac{2}{r}\right)^{-1} dr^2 + r^2 d\phi^2, \\ \frac{d^2 t}{d\lambda^2} + \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda} &= 0, \\ \frac{d^2 r}{d\lambda^2} + \frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 - \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 - (r - 2) \left(\frac{d\phi}{d\lambda}\right)^2 &= 0, \\ \frac{d^2 \phi}{d\lambda^2} + \frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda} &= 0, \end{align*}

implying:

d2tdλ2=2r(r2)dtdλdrdλ,d2rdλ2=r2r3(dtdλ)2+1r(r2)(drdλ)2+(r2)(dϕdλ)2,d2ϕdλ2=2rdrdλdϕdλ, \begin{align*} \frac{d^2 t}{d\lambda^2} &= - \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda}, \\ \frac{d^2 r}{d\lambda^2} &= -\frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 + \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 + (r - 2) \left(\frac{d\phi}{d\lambda}\right)^2, \\ \frac{d^2 \phi}{d\lambda^2} &= -\frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda}, \end{align*}

which can be solved using the Euler method:

Unt=Un1th2rn1(rn12)Un1tUn1r,Unr=Un1r+h[rn12(rn1)3(Un1t)2+1rn1(rn12)(Un1r)2+(rn12)(Un1ϕ)2],Unϕ=Un1ϕh2rn1Un1rUn1ϕ,tn=tn1+hUn1t,rn=rn1+hUn1r,ϕn=ϕn1+hUn1ϕ, \begin{align*} U^t_n &= U^t_{n - 1} - h \frac{2}{r_{n - 1}(r_{n - 1} - 2)} U^t_{n - 1} U^r_{n - 1}, \\ U^r_n &= U^r_{n - 1} + h \left[- \frac{r_{n - 1} - 2}{(r_{n - 1})^3} \left(U^t_{n - 1}\right)^2 + \frac{1}{r_{n - 1}(r_{n - 1} - 2)} \left(U^r_{n - 1}\right)^2 + (r_{n - 1} - 2) \left(U^{\phi}_{n - 1}\right)^2\right], \\ U^{\phi}_n &= U^{\phi}_{n - 1} - h \frac{2}{r_{n - 1}} U^r_{n - 1} U^{\phi}_{n - 1}, \\[4ex] t_n &= t_{n - 1} + h U^t_{n - 1}, \\ r_n &= r_{n - 1} + h U^r_{n - 1}, \\ \phi_n &= \phi_{n - 1} + h U^{\phi}_{n - 1}, \end{align*}

where hh is a small step and Uμ=dxμdλU^{\mu} = \frac{dx^{\mu}}{d\lambda}.

From the geodesics chapter, the length of a tangent vector is given by:

ϵ=(12r)(dtdλ)2+(12r)1(drdλ)2+r2(dϕdλ)2,\epsilon = -\left(1 - \frac{2}{r}\right) \left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2,

where ϵ\epsilon is:

ϵ<0,for timelike geodesics,ϵ=1,for timelike geodesics where λ=τ,ϵ=0,for lightlike geodesics,ϵ>0,for spacelike geodesics,ϵ=1,for spacelike geodesics where λ=L0. \begin{align*} \epsilon &< 0, & &\textrm{for timelike geodesics}, \\ \epsilon &= -1, & &\textrm{for timelike geodesics where \(\lambda = \tau\)}, \\ \epsilon &= 0, & &\textrm{for lightlike geodesics}, \\ \epsilon &> 0, & &\textrm{for spacelike geodesics}, \\ \epsilon &= 1, & &\textrm{for spacelike geodesics where \(\lambda = L_0\)}. \end{align*}

For timelike paths, I will parametrize path by the proper time τ\tau (ϵ=1\epsilon = -1). The geodesic equations are in the form:

d2tdτ2=2r(r2)dtdτdrdτ,d2rdτ2=r2r3(dtdτ)2+1r(r2)(drdτ)2+(r2)(dϕdτ)2,d2ϕdτ2=2rdrdτdϕdτ. \begin{align*} \frac{d^2 t}{d\tau^2} &= - \frac{2}{r(r - 2)} \frac{dt}{d\tau} \frac{dr}{d\tau}, \\ \frac{d^2 r}{d\tau^2} &= -\frac{r - 2}{r^3} \left(\frac{dt}{d\tau}\right)^2 + \frac{1}{r(r - 2)} \left(\frac{dr}{d\tau}\right)^2 + (r - 2) \left(\frac{d\phi}{d\tau}\right)^2, \\ \frac{d^2 \phi}{d\tau^2} &= -\frac{2}{r} \frac{dr}{d\tau} \frac{d\phi}{d\tau}. \end{align*}

The initial time dilation can be derived from the tangent vector length:

1=(12r)(U0t)2(12r)1(U0r)2r2(U0ϕ)2,r2r(U0t)2=1+rr2(U0r)2+r2(U0ϕ)2,U0t=rr2[1+rr2(U0r)2+r2(U0ϕ)2], \begin{align*} 1 &= \left(1 - \frac{2}{r}\right) \left(U^t_0\right)^2 - \left(1 - \frac{2}{r}\right)^{-1} \left(U^r_0\right)^2 - r^2 \left(U^{\phi}_0\right)^2, \\ \frac{r - 2}{r} \left(U^t_0\right)^2 &= 1 + \frac{r}{r - 2} \left(U^r_0\right)^2 + r^2 \left(U^{\phi}_0\right)^2, \\ U^t_0 &= \sqrt{\frac{r}{r - 2}\left[1 + \frac{r}{r - 2} \left(U^r_0\right)^2 + r^2 \left(U^{\phi}_0\right)^2\right]}, \\ \end{align*}

then the Euler method can be used to solve for the motion.

For lightlike paths, ϵ=0\epsilon = 0. The tangent vector length is equal to:

0=(12r)(dtdλ)2+(12r)1(drdλ)2+r2(dϕdλ)2.0 = -\left(1 - \frac{2}{r}\right) \left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2.

And the geodesic equations don't change:

d2tdλ2=2r(r2)dtdλdrdλ,d2rdλ2=r2r3(dtdλ)2+1r(r2)(drdλ)2+(r2)(dϕdλ)2,d2ϕdλ2=2rdrdλdϕdλ. \begin{align*} \frac{d^2 t}{d\lambda^2} &= - \frac{2}{r(r - 2)} \frac{dt}{d\lambda} \frac{dr}{d\lambda}, \\ \frac{d^2 r}{d\lambda^2} &= -\frac{r - 2}{r^3} \left(\frac{dt}{d\lambda}\right)^2 + \frac{1}{r(r - 2)} \left(\frac{dr}{d\lambda}\right)^2 + (r - 2) \left(\frac{d\phi}{d\lambda}\right)^2, \\ \frac{d^2 \phi}{d\lambda^2} &= -\frac{2}{r} \frac{dr}{d\lambda} \frac{d\phi}{d\lambda}. \end{align*}

Consider a light source SS at a distance r0r_0 from the mass MM. The outgoing light rays (illustrated by LL) have radial coordinates (r~,ϕ~)(\tilde{r}, \tilde{\phi}) centered at the light source:

Coordinates

All right rays travel from SS at dr~dλ=c=1\frac{d\tilde{r}}{d\lambda} = c = 1 and dϕ~dλ=0\frac{d\tilde{\phi}}{d\lambda} = 0 when λ=0\lambda = 0:

Coordinates 2
drdλ=cosϕ~,v=r0dϕdλ=sinϕ~,dϕdλ=sinϕ~r0. \begin{align*} \frac{dr}{d\lambda} = -\cos \tilde{\phi}, \\ v_{\perp} = r_0 \frac{d\phi}{d\lambda} = \sin \tilde{\phi}, \\ \frac{d\phi}{d\lambda} = \frac{\sin \tilde{\phi}}{r_0}. \end{align*}

Note: ϕ~\tilde{\phi} has to be the angle between dr~dλ\frac{d\tilde{r}}{d\lambda} and r0r_0:

Coordinates 3

Substituting into the length of tangent vector formula (at λ=0,r=r0\lambda = 0, r = r_0):

0=(12r0)(dtdλ)2+(12r0)1cos2ϕ~+r02sin2ϕ~r02,(12r0)(dtdλ)2=(12r0)1cos2ϕ~+sin2ϕ~,(dtdλ)2=(12r0)1[(12r0)1cos2ϕ~+sin2ϕ~],dtdλ=(12r0)1[(12r0)1cos2ϕ~+sin2ϕ~]. \begin{align*} 0 &= -\left(1 - \frac{2}{r_0}\right) \left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2}{r_0}\right)^{-1} \cos^2 \tilde{\phi} + r_0^2 \frac{\sin^2 \tilde{\phi}}{r_0^2}, \\ \left(1 - \frac{2}{r_0}\right) \left(\frac{dt}{d\lambda}\right)^2 &= \left(1 - \frac{2}{r_0}\right)^{-1} \cos^2 \tilde{\phi} + \sin^2 \tilde{\phi}, \\ \left(\frac{dt}{d\lambda}\right)^2 &= \left(1 - \frac{2}{r_0}\right)^{-1} \left[\left(1 - \frac{2}{r_0}\right)^{-1} \cos^2 \tilde{\phi} + \sin^2 \tilde{\phi}\right], \\ \frac{dt}{d\lambda} &= \sqrt{\left(1 - \frac{2}{r_0}\right)^{-1} \left[\left(1 - \frac{2}{r_0}\right)^{-1} \cos^2 \tilde{\phi} + \sin^2 \tilde{\phi}\right]}. \end{align*}

Now, the Euler method can be employed. But since we're working with multiple rays at once, I will use the coordinate time tt to find λ\lambda for each ray. We can derive this from the tangent vector length equation:

0=(12r)(dtdλ)2+(12r)1(drdλ)2+r2(dϕdλ)2,(12r)(dtdλ)2=(12r)1(drdλ)2+r2(dϕdλ)2,(dtdλ)2=(12r)2(drdλ)2+r2(12r)1(dϕdλ)2,dtdλ=(12r)2(drdλ)2+r2(12r)1(dϕdλ)2,dλ=[(22r)2(drdλ)2+r2(12r)1(dϕdλ)2]1/2dt,Δλ=[(22r)2(drdλ)2+r2(12r)1(dϕdλ)2]1/2Δt. \begin{align*} 0 &= -\left(1 - \frac{2}{r}\right) \left(\frac{dt}{d\lambda}\right)^2 + \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2, \\ \left(1 - \frac{2}{r}\right) \left(\frac{dt}{d\lambda}\right)^2 &= \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(\frac{d\phi}{d\lambda}\right)^2, \\ \left(\frac{dt}{d\lambda}\right)^2 &= \left(1 - \frac{2}{r}\right)^{-2} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{d\phi}{d\lambda}\right)^2, \\ \frac{dt}{d\lambda} &= \sqrt{\left(1 - \frac{2}{r}\right)^{-2} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{d\phi}{d\lambda}\right)^2}, \\ d\lambda &= \left[\left(2 - \frac{2}{r}\right)^{-2} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{d\phi}{d\lambda}\right)^2\right]^{-1/2} dt, \\ \Delta \lambda &= \left[\left(2 - \frac{2}{r}\right)^{-2} \left(\frac{dr}{d\lambda}\right)^2 + r^2 \left(1 - \frac{2}{r}\right)^{-1} \left(\frac{d\phi}{d\lambda}\right)^2\right]^{-1/2} \Delta t. \end{align*}

We can substitute h=Δλh = \Delta \lambda into our original equations:

Unt=Un1tΔλ2rn1(rn12)Un1tUn1r,Unr=Un1r+Δλ[rn12(rn1)3(Un1t)2+1rn1(rn12)(Un1r)2+(rn12)(Un1ϕ)2],Unϕ=Un1ϕΔλ2rn1Un1rUn1ϕ,tn=tn1+ΔλUn1t,rn=rn1+ΔλUn1r,ϕn=ϕn1+ΔλUn1ϕ,Δλ=[(22rn1)2(Un1r)2+rn12(12rn1)1(Un1ϕ)2]1/2Δt. \begin{align*} U^t_n &= U^t_{n - 1} - \Delta \lambda \frac{2}{r_{n - 1}(r_{n - 1} - 2)} U^t_{n - 1} U^r_{n - 1}, \\ U^r_n &= U^r_{n - 1} + \Delta \lambda \left[- \frac{r_{n - 1} - 2}{(r_{n - 1})^3} \left(U^t_{n - 1}\right)^2 + \frac{1}{r_{n - 1}(r_{n - 1} - 2)} \left(U^r_{n - 1}\right)^2 + (r_{n - 1} - 2) \left(U^{\phi}_{n - 1}\right)^2\right], \\ U^{\phi}_n &= U^{\phi}_{n - 1} - \Delta \lambda \frac{2}{r_{n - 1}} U^r_{n - 1} U^{\phi}_{n - 1}, \\[4ex] t_n &= t_{n - 1} + \Delta \lambda U^t_{n - 1}, \\ r_n &= r_{n - 1} + \Delta \lambda U^r_{n - 1}, \\ \phi_n &= \phi_{n - 1} + \Delta \lambda U^{\phi}_{n - 1}, \\[4ex] \Delta \lambda &= \left[\left(2 - \frac{2}{r_{n - 1}}\right)^{-2} \left(U^r_{n - 1}\right)^2 + r_{n - 1}^2 \left(1 - \frac{2}{r_{n - 1}}\right)^{-1} \left(U^{\phi}_{n - 1}\right)^2\right]^{-1/2} \Delta t. \end{align*}