Back

Geodesics and Christoffel Symbols

Geodesic is the straightest and shortest path between two points in curved space. In flat space, this is straight line. In flat space, a straight path (geodesic) has zero acceleration (red arrows) if we travel along it at constant speed:

Non geodesic curveGeodesic curveNon geodesicGeodesic

For curved surfaces, there is not a straight path. However, there is a straightest possible path - the geodesic:

Non geodesic curve on sphereGeodesic curve on sphereNon geodesicGeodesic

The geodesic is a path where its acceleration (red vectors) is only in the normal components. This implies the tangential acceleration is zero.

We can write the acceleration (second derivative of extrinsic vector R\boldsymbol{R}) as sum of the tangential (tt) and the normal (nn) acceleration:

d2Rdλ2=(d2Rdλ2)t+(d2Rdλ2)n,\frac{d^2 \boldsymbol{R}}{d \lambda^2} = \left(\frac{d^2 \boldsymbol{R}}{d \lambda^2}\right)_t + \left(\frac{d^2 \boldsymbol{R}}{d \lambda^2}\right)_n,

and the idea will be to set the tangential component equal to zero.

Calculating the second derivative:

d2Rdλ2=ddλ(dRμdλRRμ)=d2Rμdλ2RRμ+dRμdλddλ(RRμ),\frac{d^2 \boldsymbol{R}}{d \lambda^2} = \frac{d}{d\lambda} \left(\frac{d R^{\mu}}{d \lambda} \frac{\partial \boldsymbol{R}}{\partial R^{\mu}}\right) = \frac{d^2 R^{\mu}}{d \lambda^2} \frac{\partial \boldsymbol{R}}{\partial R^{\mu}} + \frac{d R^{\mu}}{d \lambda} \frac{d}{d\lambda} \left(\frac{\partial \boldsymbol{R}}{\partial R^{\mu}}\right),

we can expand the derivative operator:

ddλ=dRμdλRμ,\frac{d}{d \lambda} = \frac{d R^{\mu}}{d \lambda} \frac{\partial}{\partial R^{\mu}},

substituting it back:

d2Rdλ2=d2Rμdλ2RRμ+dRμdλdRνdλRν(RRμ)=d2Rμdλ2RRμ+dRμdλdRνdλ2RRμRν, \begin{align*} \frac{d^2 \boldsymbol{R}}{d \lambda^2} &= \frac{d^2 R^{\mu}}{d \lambda^2} \frac{\partial \boldsymbol{R}}{\partial R^{\mu}} + \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \frac{\partial}{\partial R^{\nu}} \left(\frac{\partial \boldsymbol{R}}{\partial R^{\mu}}\right) \\ &= \frac{d^2 R^{\mu}}{d \lambda^2} \frac{\partial \boldsymbol{R}}{\partial R^{\mu}} + \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}}, \end{align*}

here, RμR^{\mu} and RνR^{\nu} represent the intrinsic coordinates (for sphere θ\theta and ϕ\phi).

To make sense of the second partial derivative, consider the tangent plane of a sphere:

Tangent plane of a sphere

In the 2D surface, the second partial derivative will be three dimensional (with non zero normal components). We don't know the components, so we will invent them:

2RRμRν=Γθμνeθ+Γϕμνeϕ+Lμνn^,\frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} = \Gamma^{\theta}{}_{\mu \nu} \boldsymbol{e_{\theta}} + \Gamma^{\phi}{}_{\mu \nu} \boldsymbol{e_{\phi}} + L_{\mu \nu} \boldsymbol{\hat{n}},

or generally for any coordinates and any dimensions:

2RRμRν=Γσμνeσ+Lμνn^=ΓσμνRRσ+Lμνn^, \begin{align*} \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} &= \Gamma^{\sigma}{}_{\mu \nu} \boldsymbol{e_{\sigma}} + L_{\mu \nu} \boldsymbol{\hat{n}} \\ &= \Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \boldsymbol{\hat{n}}, \end{align*}

where Γσμν\Gamma^{\sigma}{}_{\mu \nu} are called the Christoffel symbols and LμνL_{\mu \nu} are called the second fundamental form. Christoffel symbols give us the tangential components and the second fundamental form give us the normal components.

Substituting into the equation for acceleration:

d2Rdλ2=d2Rμdλ2RRμ+dRμdλdRνdλ(ΓσμνRRσ+Lμνn^)=d2Rσdλ2RRσ+ΓσμνdRμdλdRνdλRRσ+LμνdRμdλdRνdλn^=(d2Rσdλ2+ΓσμνdRμdλdRνdλ)RRσ+LμνdRμdλdRνdλn^. \begin{align*} \frac{d^2 \boldsymbol{R}}{d \lambda^2} &= \frac{d^2 R^{\mu}}{d \lambda^2} \frac{\partial \boldsymbol{R}}{\partial R^{\mu}} + \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \left(\Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \boldsymbol{\hat{n}}\right) \\ &= \frac{d^2 R^{\sigma}}{d \lambda^2} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + \Gamma^{\sigma}{}_{\mu \nu} \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \boldsymbol{\hat{n}} \\ &= \left(\frac{d^2 R^{\sigma}}{d \lambda^2} + \Gamma^{\sigma}{}_{\mu \nu} \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda}\right) \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} \boldsymbol{\hat{n}}. \\ \end{align*}

We now have the tangential and normal components separated. The geodesics have zero tangential acceleration:

(d2Rσdλ2+ΓσμνdRμdλdRνdλ)RRσ=0,d2Rσdλ2+ΓσμνdRμdλdRνdλ=0, \begin{align*} \left(\frac{d^2 R^{\sigma}}{d \lambda^2} + \Gamma^{\sigma}{}_{\mu \nu} \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda}\right) \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} &= \boldsymbol{0}, \\ \frac{d^2 R^{\sigma}}{d \lambda^2} + \Gamma^{\sigma}{}_{\mu \nu} \frac{d R^{\mu}}{d \lambda} \frac{d R^{\nu}}{d \lambda} &= 0, \end{align*}

the second equation is a set of equations that each of σ\sigma components have to satisfy for a curve to be geodesic. Together they are called the geodesic equations components have to satisfy for a curve to be geodesic. Together they are called the geodesic equations.

Christoffel symbols can be calculated by using the fact that the dot product of perpendicular vector is zero (by definition, the normal vector is perpendicular to the tangent vectors):

2RRμRν=ΓσμνRRσ+Lμνn^,2RRμRνRRλ=(ΓσμνRRσ+Lμνn^)RRλ=ΓσμνRRσRRλ+Lμνn^RRλ=Γσμνgσλ,Γλμν=2RRμRνRRλ=eμRνeλ,Γλμν=2RRμRνRRσgσλ=eμRνeσgσλ, \begin{align*} \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} &= \Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \boldsymbol{\hat{n}}, \\ \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\lambda}} &= \left(\Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \boldsymbol{\hat{n}}\right) \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\lambda}} \\ &= \Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\lambda}} + L_{\mu \nu} \boldsymbol{\hat{n}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\lambda}} \\ &= \Gamma^{\sigma}{}_{\mu \nu} g_{\sigma \lambda}, \\ \Gamma_{\lambda \mu \nu} &= \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\lambda}} = \frac{\partial \boldsymbol{e_{\mu}}}{\partial R^{\nu}} \cdot \boldsymbol{e_{\lambda}}, \\ \Gamma^{\lambda}{}_{\mu \nu} &= \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} g^{\sigma \lambda} = \frac{\partial \boldsymbol{e_{\mu}}}{\partial R^{\nu}} \cdot \boldsymbol{e_{\sigma}} g^{\sigma \lambda}, \end{align*}

where Γλμν\Gamma_{\lambda \mu \nu} are called the Christoffel symbols of the first kind and Γλμν\Gamma^{\lambda}{}_{\mu \nu} are called the Christoffel symbols of the second kind. The Christoffel symbols measure how the basis vectors change from point to point. Most of the time, by Christoffel symbols I will refer to the Christoffel symbols of the second kind. This definition is problematic, because it uses the extrinsic vector R\boldsymbol{R}. However, for this section, it will suffice.

Similarly, we can solve for the second fundamental form:

2RRμRν=ΓσμνRRσ+Lμνn^,2RRμRνn^=(ΓσμνRRσ+Lμνn^)n^=ΓσμνRRσn^+Lμνn^n^=Lμν. \begin{align*} \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} &= \Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \boldsymbol{\hat{n}}, \\ \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} \cdot \boldsymbol{\hat{n}} &= \left(\Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} + L_{\mu \nu} \boldsymbol{\hat{n}}\right) \cdot \boldsymbol{\hat{n}} \\ &= \Gamma^{\sigma}{}_{\mu \nu} \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} \cdot \boldsymbol{\hat{n}} + L_{\mu \nu} \boldsymbol{\hat{n}} \cdot \boldsymbol{\hat{n}} \\ &= L_{\mu \nu}. \end{align*}

The normal vector may also be given by cross product of the basis vectors (divided by its length to have length equal to one):

Lμν=eμRνeμ×eμeμ×eμ.L_{\mu \nu} = \frac{\partial \boldsymbol{e_{\mu}}}{\partial R^{\nu}} \cdot \frac{\boldsymbol{e_{\mu}} \times \boldsymbol{e_{\mu}}}{|\boldsymbol{e_{\mu}} \times \boldsymbol{e_{\mu}}|}.

Since the order of partial differentiation does not matter, we can prove the following symmetry:

Γλμν=2RRμRνRRλ=2RRνRμRRλ=Γλνμ,Γλμν=2RRμRνRRσgσλ=2RRνRμRRσgσλ=Γλνμ. \begin{align*} \Gamma_{\lambda \mu \nu} &= \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\lambda}} = \frac{\partial^2 \boldsymbol{R}}{\partial R^{\nu} \partial R^{\mu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\lambda}} = \Gamma_{\lambda \nu \mu}, \\ \Gamma^{\lambda}{}_{\mu \nu} &= \frac{\partial^2 \boldsymbol{R}}{\partial R^{\mu} \partial R^{\nu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} g^{\sigma \lambda} = \frac{\partial^2 \boldsymbol{R}}{\partial R^{\nu} \partial R^{\mu}} \cdot \frac{\partial \boldsymbol{R}}{\partial R^{\sigma}} g^{\sigma \lambda} = \Gamma^{\lambda}{}_{\nu \mu}. \end{align*}

The Christoffel symbols are not a tensor. They do not transform under the change of coordinates like tensors:

Γ~σμνx~σxαxβx~μxγx~νΓβγα.\tilde{\Gamma}^{\sigma}{}_{\mu \nu} \neq \frac{\partial \tilde{x}^{\sigma}}{\partial x^{\alpha}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\gamma}}{\partial \tilde{x}^{\nu}} \Gamma^{\alpha}_{\beta \gamma}.

This will be proven in the next chapter.

Consider the 2D Cartesian coordinates in flat plane. We know that the basis vectors don't change, implying:

eμRν=0,Γλμν=0eσgσλ=0. \begin{align*} \frac{\partial \boldsymbol{e_{\mu}}}{\partial R^{\nu}} &= \boldsymbol{0}, \\ \Gamma^{\lambda}{}_{\mu \nu} &= \boldsymbol{0} \cdot \boldsymbol{e_{\sigma}} g^{\sigma \lambda} = 0. \end{align*}

This simplifies the geodesic equations:

d2Rσdλ2=0,\frac{d^2 R^{\sigma}}{d \lambda^2} = 0,

implying:

Rσ=Cσλ+R0σ,R^{\sigma} = C_{\sigma} \lambda + R^{\sigma}_0,

where CσC_{\sigma} and R0σR^{\sigma}_0 are constants. CσC_{\sigma} is the initial velocity and R0σR^{\sigma}_0 is the initial position.

However, when we consider the 2D polar coordinates where:

x=rcosθ,y=rsinθ,r=x2+y2,θ=tan1(yx), \begin{align*} x &= r \cos \theta, \\ y &= r \sin \theta, \\ r &= \sqrt{x^2 + y^2}, \\ \theta &= \tan^{-1} \left(\frac{y}{x}\right), \end{align*}

where the metric tensor and its inverse are equal to:

g~μν=[100r2],g~μν=[1001r2]. \begin{align*} \tilde{g}_{\mu \nu} &= \begin{bmatrix} 1 & 0 \\ 0 & r^2 \end{bmatrix}, \\ \tilde{g}^{\mu \nu} &= \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{r^2} \end{bmatrix}. \end{align*}

The Jacobian is:

xr=cosθ,xr=rsinθ,yr=sinθ,yr=rcosθ, \begin{align*} \frac{\partial x}{\partial r} &= \cos \theta, & \frac{\partial x}{\partial r} &= -r \sin \theta, \\ \frac{\partial y}{\partial r} &= \sin \theta, & \frac{\partial y}{\partial r} &= r \cos \theta, \end{align*}

and the inverse Jacobian:

rx=xx2+y2=cosθ,ry=yx2+y2=sinθ,θx=yx2+y2=sinθr,θy=xx2+y2=cosθr. \begin{align*} \frac{\partial r}{\partial x} &= \frac{x}{\sqrt{x^2 + y^2}} = \cos \theta, & \frac{\partial r}{\partial y} &= \frac{y}{\sqrt{x^2 + y^2}} = \sin \theta, \\ \frac{\partial \theta}{\partial x} &= -\frac{y}{x^2 + y^2} = - \frac{\sin \theta}{r}, & \frac{\partial \theta}{\partial y} &= \frac{x}{x^2 + y^2} = \frac{\cos \theta}{r}. \end{align*}

The basis vectors transform covariantly:

e~μ=xνx~μeν,\boldsymbol{\tilde{e}_{\mu}} = \frac{\partial x^{\nu}}{\partial \tilde{x}^{\mu}} \boldsymbol{e_{\nu}},

where the individual basis vectors are as follows:

e~r=xrex+yrey=cosθex+sinθey,e~θ=xθex+yθey=rsinθex+rcosθey. \begin{align*} \boldsymbol{\tilde{e}_r} &= \frac{\partial x}{\partial r} \boldsymbol{e_x} + \frac{\partial y}{\partial r} \boldsymbol{e_y} \\ &= \cos \theta \boldsymbol{e_x} + \sin \theta \boldsymbol{e_y}, \\ \boldsymbol{\tilde{e}_{\theta}} &= \frac{\partial x}{\partial \theta} \boldsymbol{e_x} + \frac{\partial y}{\partial \theta} \boldsymbol{e_y} \\ &= - r \sin \theta \boldsymbol{e_x} + r \cos \theta \boldsymbol{e_y}. \end{align*}

To compute the Christoffel symbols, we need partial derivatives of the basis vectors:

e~rr=0,e~θθ=rcosθexrsinθey,e~θr=e~rθ=sinθex+cosθey. \begin{align*} \frac{\partial \boldsymbol{\tilde{e}_r}}{\partial r} &= \boldsymbol{0}, \\ \frac{\partial \boldsymbol{\tilde{e}_\theta}}{\partial \theta} &= -r \cos \theta \boldsymbol{e_x} - r \sin \theta \boldsymbol{e_y}, \\ \frac{\partial \boldsymbol{\tilde{e}_{\theta}}}{\partial r} = \frac{\partial \boldsymbol{\tilde{e}_r}}{\partial \theta} &= -\sin \theta \boldsymbol{e_x} + \cos \theta \boldsymbol{e_y}. \end{align*}

The Christoffel symbols are equal to:

Γμνλ=e~μx~νe~σg~σλ,Γμνr=e~μx~νe~rg~rr,Γμνθ=e~μx~νe~θg~θθ, \begin{align*} \Gamma^{\lambda}_{\mu \nu} &= \frac{\partial \boldsymbol{\tilde{e}_{\mu}}}{\partial \tilde{x}^{\nu}} \cdot \boldsymbol{\tilde{e}_{\sigma}} \tilde{g}^{\sigma \lambda}, \\[3ex] \Gamma^r_{\mu \nu} &= \frac{\partial \boldsymbol{\tilde{e}_{\mu}}}{\partial \tilde{x}^{\nu}} \cdot \boldsymbol{\tilde{e}_r} \tilde{g}^{r r}, \\ \Gamma^{\theta}_{\mu \nu} &= \frac{\partial \boldsymbol{\tilde{e}_{\mu}}}{\partial \tilde{x}^{\nu}} \cdot \boldsymbol{\tilde{e}_{\theta}} \tilde{g}^{\theta \theta}, \end{align*}

and the individual components:

Γrrr=[00][cosθsinθ]=0,Γrθr=Γθrr=[sinθcosθ][cosθsinθ]=sinθcosθ+sinθcosθ=0,Γθθr=[rcosθrsinθ][cosθsinθ]=rcos2θ+rsin2θ=r,Γrrθ=[00][rsinθrcosθ]1r2=0,Γrθθ=Γθrθ=[sinθcosθ][rsinθrcosθ]1r2=(rsin2θ+rcos2θ)1r2=1r.Γθθθ=[rcosθrsinθ][rsinθrcosθ]=r2sinθcosθr2sinθcosθ=0. \begin{align*} \Gamma^r_{rr} &= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \\ &= 0, \\ \Gamma^r_{r\theta} = \Gamma^r_{\theta r} &= \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \\ &= - \sin \theta \cos \theta + \sin \theta \cos \theta \\ &= 0, \\ \Gamma^r_{\theta \theta} &= \begin{bmatrix} -r \cos \theta \\ -r \sin \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \\ &= -r \cos^2 \theta + -r \sin^2 \theta \\ &= -r, \\ \Gamma^{\theta}_{rr} &= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} - r \sin \theta \\ r \cos \theta \end{bmatrix} \frac{1}{r^2} \\ &= 0, \\ \Gamma^{\theta}_{r \theta} = \Gamma^{\theta}_{\theta r} &= \begin{bmatrix} - \sin \theta \\ \cos \theta \\ \end{bmatrix} \cdot \begin{bmatrix} - r \sin \theta \\ r \cos \theta \end{bmatrix} \frac{1}{r^2} \\ &= (r \sin^2 \theta + r \cos^2 \theta) \frac{1}{r^2} \\ &= \frac{1}{r}. \\ \Gamma^{\theta}_{\theta \theta} &= \begin{bmatrix} -r \cos \theta \\ -r \sin \theta \end{bmatrix} \cdot \begin{bmatrix} -r \sin \theta \\ r \cos \theta \end{bmatrix} \\ &= r^2 \sin \theta \cos \theta - r^2 \sin \theta \cos \theta \\ &= 0. \end{align*}

where the dot product between column vectors is the Cartesian dot product.

The only nonzero Christoffel symbols are:

Γθθr=r,Γrθθ=Γθrθ=1r, \begin{align*} \Gamma^r_{\theta \theta} &= -r, \\ \Gamma^{\theta}_{r \theta} = \Gamma^{\theta}_{\theta r} &= \frac{1}{r}, \end{align*}

and the geodesic equations are as follows:

d2rdλ2r(dθdλ)2=0,d2θdλ2+2rdrdλdθdλ=0. \begin{align*} \frac{d^2 r}{d \lambda^2} - r \left(\frac{d \theta}{d \lambda}\right)^2 &= 0, \\ \frac{d^2 \theta}{d \lambda^2} + \frac{2}{r} \frac{d r}{d \lambda} \frac{d \theta}{d \lambda} &= 0. \end{align*}

I will not be solving these. I will, however, the scenario where θ=θ0    d2θdλ2=dθdλ=0\theta = \theta_0 \implies \frac{d^2 \theta}{d\lambda^2} = \frac{d\theta}{d\lambda} = 0, the geodesic equations simplify to:

d2rdλ2=0,r=vλ+r0, \begin{align*} \frac{d^2 r}{d\lambda^2} &= 0, \\ r &= v_{\parallel} \lambda + r_0, \end{align*}

where vv_{\parallel} is the initial radial velocity and r0r_0 is the initial rr coordinate. The motion is only radial.

In the metric tensor, we derived the intrinsic basis vectors and the metric tensor:

eˉθ=rcosθcosϕex+rcosθsinϕeyrsinθez,eˉϕ=rsinθsinϕex+rsinθcosϕey,gˉμν=[r200r2sin2θ], \begin{align*} \boldsymbol{\bar{e}_{\theta}} &= r \cos \theta \cos \phi \boldsymbol{e_x} + r \cos \theta \sin \phi \boldsymbol{e_y} - r \sin \theta \boldsymbol{e_z}, \\ \boldsymbol{\bar{e}_{\phi}} &= -r \sin \theta \sin \phi \boldsymbol{e_x} + r \sin \theta \cos \phi \boldsymbol{e_y}, \\ \bar{g}_{\mu \nu} &= \begin{bmatrix} r^2 & 0 \\ 0 & r^2 \sin^2 \theta \end{bmatrix}, \end{align*}

and the inverse metric tensor is equal to:

gˉμν=[1r2001r2sin2θ]. \begin{align*} \bar{g}^{\mu \nu} &= \begin{bmatrix} \frac{1}{r^2} & 0 \\ 0 & \frac{1}{r^2 \sin^2 \theta} \end{bmatrix}. \end{align*}

The partial derivatives of the basis vectors are equal to:

eˉθθ=rsinθcosϕexrsinθsinϕeyrcosθez,eˉϕϕ=rsinθcosϕexrsinθsinϕey,eˉϕθ=eˉθϕ=rcosθsinϕex+rcosθcosϕey. \begin{align*} \frac{\partial \boldsymbol{\bar{e}_{\theta}}}{\partial \theta} &= -r \sin \theta \cos \phi \boldsymbol{e_x} - r \sin \theta \sin \phi \boldsymbol{e_y} - r \cos \theta \boldsymbol{e_z}, \\ \frac{\partial \boldsymbol{\bar{e}_{\phi}}}{\partial \phi} &= -r \sin \theta \cos \phi \boldsymbol{e_x} - r \sin \theta \sin \phi \boldsymbol{e_y}, \\ \frac{\partial \boldsymbol{\bar{e}_{\phi}}}{\partial \theta} = \frac{\partial \boldsymbol{\bar{e}_{\theta}}}{\partial \phi} &= -r \cos \theta \sin \phi \boldsymbol{e_x} + r \cos \theta \cos \phi \boldsymbol{e_y}. \end{align*}

Since the metric tensor and its inverse is diagonal, the Christoffel symbols simplify:

Γθμν=eˉμRνeˉθgθθ,Γϕμν=eˉμRνeˉϕgϕϕ. \begin{align*} \Gamma^{\theta}{}_{\mu \nu} = \frac{\partial \boldsymbol{\bar{e}_{\mu}}}{\partial R^{\nu}} \cdot \boldsymbol{\bar{e}_{\theta}} g^{\theta \theta}, \\ \Gamma^{\phi}{}_{\mu \nu} = \frac{\partial \boldsymbol{\bar{e}_{\mu}}}{\partial R^{\nu}} \cdot \boldsymbol{\bar{e}_{\phi}} g^{\phi \phi}. \end{align*}

The individual Christoffel symbols are equal to:

Γθθθ=[rsinθcosϕrsinθsinϕrcosθ][rcosθcosϕrcosθsinϕrsinθ]1r2=(r2sinθcosθcos2ϕr2sinθcosθsin2ϕ+r2sinθcosθ)1r2=sinθcosθ(cos2ϕ+sin2ϕ)+sinθcosθ=sinθcosθ+sinθcosθ=0,Γθθϕ=Γθϕθ=[rcosθsinϕrcosθcosϕ0][rcosθcosϕrcosθsinϕrsinθ]1r2=(r2cos2θsinϕcosϕ+r2cos2θsinϕcosϕ)1r2=0,Γθϕϕ=[rsinθcosϕrsinθsinϕ0][rcosθcosϕrcosθsinϕrsinθ]1r2=(r2sinθcosθcos2ϕr2sinθcosθsin2ϕ)1r2=sinθcosθ(cos2ϕ+sin2ϕ)=sinθcosθ,Γϕθθ=[rsinθcosϕrsinθsinϕrcosθ][rsinθsinϕrsinθcosϕ0]1r2sin2θ=(r2sin2θsinϕcosϕr2sin2θsinϕcosϕ)1r2sin2θ=0,Γϕθϕ=Γϕϕθ=[rcosθsinϕrcosθcosϕ0][rsinθsinϕrsinθcosϕ0]1r2sin2θ=(r2sinθcosθsin2ϕ+r2sinθcosθcos2ϕ)1r2sin2θ=cosθsinθ(sin2ϕ+cos2ϕ)=cotθ,Γϕϕϕ=[rsinθcosϕrsinθsinϕ0][rsinθsinϕrsinθcosϕ0]1r2sin2θ=(r2sin2θsinϕcosϕr2sin2θsinϕcosϕ)1r2sin2θ=0, \begin{align*} \Gamma^{\theta}{}_{\theta \theta} &= \begin{bmatrix} -r \sin \theta \cos \phi \\ - r \sin \theta \sin \phi \\ - r \cos \theta \end{bmatrix} \cdot \begin{bmatrix} r \cos \theta \cos \phi \\ r \cos \theta \sin \phi \\ - r \sin \theta \end{bmatrix} \frac{1}{r^2} \\ &= (-r^2 \sin \theta \cos \theta \cos^2 \phi - r^2 \sin \theta \cos \theta \sin^2 \phi + r^2 \sin \theta \cos \theta) \frac{1}{r^2} \\ &= -\sin \theta \cos \theta (\cos^2 \phi + \sin^2 \phi) + \sin \theta \cos \theta \\ &= -\sin \theta \cos \theta + \sin \theta \cos \theta \\ &= 0, \\ \Gamma^{\theta}{}_{\theta \phi} = \Gamma^{\theta}{}_{\phi \theta} &= \begin{bmatrix} -r \cos \theta \sin \phi \\ r \cos \theta \cos \phi \\ 0 \end{bmatrix} \cdot \begin{bmatrix} r \cos \theta \cos \phi \\ r \cos \theta \sin \phi \\ - r \sin \theta \end{bmatrix} \frac{1}{r^2} \\ &= (-r^2 \cos^2 \theta \sin \phi \cos \phi + r^2 \cos^2 \theta \sin \phi \cos \phi) \frac{1}{r^2} \\ &= 0, \\ \Gamma^{\theta}{}_{\phi \phi} &= \begin{bmatrix} -r \sin \theta \cos \phi \\ - r \sin \theta \sin \phi \\ 0 \end{bmatrix} \cdot \begin{bmatrix} r \cos \theta \cos \phi \\ r \cos \theta \sin \phi \\ - r \sin \theta \end{bmatrix} \frac{1}{r^2} \\ &= (-r^2 \sin \theta \cos \theta \cos^2 \phi - r^2 \sin \theta \cos \theta \sin^2 \phi) \frac{1}{r^2} \\ &= -\sin \theta \cos \theta (\cos^2 \phi + \sin^2 \phi) \\ &= -\sin \theta \cos \theta, \\ \Gamma^{\phi}{}_{\theta \theta} &= \begin{bmatrix} -r \sin \theta \cos \phi \\ - r \sin \theta \sin \phi \\ - r \cos \theta \end{bmatrix} \cdot \begin{bmatrix} -r \sin \theta \sin \phi \\ r \sin \theta \cos \phi \\ 0 \end{bmatrix} \frac{1}{r^2 \sin^2 \theta} \\ &= (r^2 \sin^2 \theta \sin \phi \cos \phi - r^2 \sin^2 \theta \sin \phi \cos \phi) \frac{1}{r^2 \sin^2 \theta} \\ &= 0, \\ \Gamma^{\phi}{}_{\theta \phi} = \Gamma^{\phi}{}_{\phi \theta} &= \begin{bmatrix} -r \cos \theta \sin \phi \\ r \cos \theta \cos \phi \\ 0 \end{bmatrix} \cdot \begin{bmatrix} -r \sin \theta \sin \phi \\ r \sin \theta \cos \phi \\ 0 \end{bmatrix} \frac{1}{r^2 \sin^2 \theta} \\ &= (r^2 \sin \theta \cos \theta \sin^2 \phi + r^2 \sin \theta \cos \theta \cos^2 \phi) \frac{1}{r^2 \sin^2 \theta} \\ &= \frac{\cos \theta}{\sin \theta} (\sin^2 \phi + \cos^2 \phi) \\ &= \cot \theta, \\ \Gamma^{\phi}{}_{\phi \phi} &= \begin{bmatrix} -r \sin \theta \cos \phi \\ - r \sin \theta \sin \phi \\ 0 \end{bmatrix} \cdot \begin{bmatrix} -r \sin \theta \sin \phi \\ r \sin \theta \cos \phi \\ 0 \end{bmatrix} \frac{1}{r^2 \sin^2 \theta} \\ &= (r^2 \sin^2 \theta \sin \phi \cos \phi - r^2 \sin^2 \theta \sin \phi \cos \phi) \frac{1}{r^2 \sin^2 \theta} \\ &= 0, \end{align*}

where the dot product between column vectors is the Cartesian dot product.

Cleaning it up, the nonzero Christoffel symbols are equal to:

Γθϕϕ=sinθcosθ,Γϕθϕ=Γϕϕθ=cotθ. \begin{align*} \Gamma^{\theta}{}_{\phi \phi} &= -\sin \theta \cos \theta, \\ \Gamma^{\phi}{}_{\theta \phi} = \Gamma^{\phi}{}_{\phi \theta} &= \cot \theta. \end{align*}

Substituting into the geodesic equations:

0=d2θdλ2+Γθϕϕ(dϕdλ)2=d2θdλ2sinθcosθ(dϕdλ)2,0=d2ϕdλ2+2Γϕϕθdϕdλdθdλ=d2ϕdλ2+2cotθdϕdλdθdλ. \begin{align*} 0 &= \frac{d^2 \theta}{d \lambda^2} + \Gamma^{\theta}{}_{\phi \phi} \left(\frac{d \phi}{d \lambda}\right)^2 \\ &= \frac{d^2 \theta}{d \lambda^2} - \sin \theta \cos \theta \left(\frac{d \phi}{d \lambda}\right)^2, \\ 0 &= \frac{d^2 \phi}{d \lambda^2} + 2\Gamma^{\phi}{}_{\phi \theta} \frac{d \phi}{d \lambda} \frac{d \theta}{d \lambda} \\ &= \frac{d^2 \phi}{d \lambda^2} + 2 \cot \theta \frac{d \phi}{d \lambda} \frac{d \theta}{d \lambda}. \end{align*}

These equations are however hard to solve. We can try a circle of latitude:

θ=θ0,dθdλ=0,d2θdλ2=0,ϕ=Cλ,dϕdλ=C,d2ϕdλ2=0. \begin{align*} \theta &= \theta_0, & \frac{d \theta}{d \lambda} &= 0, & \frac{d^2 \theta}{d \lambda^2} &= 0, \\ \phi &= C \lambda, & \frac{d \phi}{d \lambda} &= C, & \frac{d^2 \phi}{d \lambda^2} &= 0. \end{align*}

Substituting back into the geodesic equations:

0=d2θdλ2sinθcosθ(dϕdλ)2=sinθ0cosθ0C2,0=d2ϕdλ2+2cotθdϕdλdθdλ=2cotθ0C(0)=0. \begin{align*} 0 &= \frac{d^2 \theta}{d \lambda^2} - \sin \theta \cos \theta \left(\frac{d \phi}{d \lambda}\right)^2 \\ &= - \sin \theta_0 \cos \theta_0 C^2, \\ 0 &= \frac{d^2 \phi}{d \lambda^2} + 2 \cot \theta \frac{d \phi}{d \lambda} \frac{d \theta}{d \lambda} \\ &= 2 \cot \theta_0 C (0) \\ &= 0. \end{align*}

The second equation tells us that out guess works (but only for the second equation). The first equation, however, tells us that the curve is not geodesic. But we can solve for specific θ0=π2\theta_0 = \frac{\pi}{2} which would make the curve geodesic:

sin0cos0C2=0.- \sin 0 \cos 0 C^2 = 0.

By rotational symmetry, we can rotate our coordinate system such that θ=π2\theta = \frac{\pi}{2} (refer to the illustration of geodesic curve on curved surfaces on the top of this page) and solve for a more general geodesic.